Comsol multiphysics software is established to make a simulation that is comparable with experimental device. by utilizing comsol, the positive column domain of direct-current glow discharge with argon is considered for both of different applied voltage and working gas pressure. The calculations are exhibited by using a precise collision cross sections and Townsend coefficients for the argon. The impacts of voltage and pressure on the Debye length, number of particles in Debye sphere and plasma frequency are calculated and graphically delineated. With this regard to the dependence of plasma parameters on the applied voltage and pressure, some of them are found to be compatible with the experimental results, while others are not. For example, the calculations of the COMSOL shows that the electron temperature is not always decreasing with the increase in the applied voltage, and the Debye length does not give a linearly decreasing relationship but rather an exponentially decreasing relationship. Also, the calculations do not reproduce and match the experimental results for the dependence electron density on working pressure at various potentials.
A number of glow discharge experiments has been carried out in a relatively large-volume metallic vacuum chamber containing argon at low pressure and immersed in an inhomogeneous magnetic field generated by a solenoidal coil capable of delivering 2100G. Two Paschen curves demonstrating the dependence of the discharge voltage on sparking parameter Pd and magnetic field strength B were deduced. A graphical correlation showing the behaviour of the voltage difference from the two curves on the ratio B/Pd was constructed. Investigations showed a reduction in the nominal impedance of the discharge device of nearly 20% when B reaches a value of 525G. Plasma confinement regions were found around the internal surface of the chamber at the entranc
... Show MoreA study of the effects of the discharge (sputtering) currents (60-75 mA) and the thickness of copper target (0.037, 0.055 and 0.085 mm) on the prepared samples was performed. These samples were deposited with pure copper on a glass substrate using dc magnetron sputtering with a magnetic flux density of 150 gauss at the center. The effects of these two parameters were studied on the height, diameter, and size of the deposition copper grains as well as the roughness of surface samples using atomic force microscopy (AFM).The results of this study showed that it is possible to control the specifications of copper grains by changing the discharge currents and the thickness of the target material. The increase in discharge curre
... Show MoreIn this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
A number of pulsed experiments have been carried out using a high-voltage circuit containing R,L, and C in certain arrangements. A spherical spark gap of steel electrodes was used as a high-current switch operated by a voltage of up to 8kV and triggered in both self-triggering and third-electrode triggering modes. Current measurements were carried out by using both current-viewing resistor and Rogowski coils designed for this purpose. Typical current waveforms have shown obvious dominating inductance effect of the circuit components in an underdamped oscillation. The behavior of the circuit impedance was studied by recording both pulsed current peaks and the charging voltages when currents of up to 2.5kA were recorded. The dur
... Show MoreThe microwave induced plasma jet (MIPJ) system was built using local materials and based on a tapered waveguide. The parameters of this plasma were determined like electron temperature Te, electron density ne. the other parameters such as plasma frequency( fp), the Debye length( λD), and the number of particles in the Debye sphere( Nd) It has also been studied. The study were done at different Ar flow rate ranging from (2-10) l/m and a discharge tube diameter ranging from (2-10) mm. all of these parameters were determined depending on the MIPJ spectrum. it turned out that there is a high possibility of controlling the parameters of MIPJ through manipulating these parameters.
In this research pulse high voltage circuit was used including resistance,
inductance and capacitor to achieve an experiment of cylindrically-tipped of plasma
switch .The charging voltage of up to 9kV using Rogowski coil and current-shunt
resistance (CVR) used to measure pulsed electrical discharge (PED). The current in
both self-triggering and third-electrode triggering modes. The pulsed current peaks
4kA and the duration of circuit pulses were recorded between 0.1μs and 0.3μs. The
experimental results has shown clearly the inductance effect in the circuit parts in
under damped oscillation regarding the value of circuit parts in addition to the
distance of the spark gap cylindrically-tipped electrodes during th
The direct application of cold atmospheric plasma (CAP) is the main scope of plasma medicine in or on the organism for curative purposes. Cold plasma is both effective in disrupting a wide range of microorganisms including multiple drug resistant ones (MDRs) and to stimulate proliferation of mammalian cells. It has obtained by Floating Electrode Dielectric Barrier Discharge (FE-DBD) system. The present study aimed to show the effected of cold plasma on the fertility hormones LH, Prolactin, Estrogen, and Testosterone hormones for healthy adult female rats (Albino) / bulb c). There are divided into many groups according to time exposure of plasma (15, 30, 60, and 90 second) and a refere
This study shows the effects of copper material electrode, applied voltage, and different pressure values on electrical discharge plasma. The purpose of the work is the application of the spectral analysis method to obtain accurate results of nitrogen plasma parameters. By using the optical emission spectroscopy (OES), many N2 molecular spectra peaks appeared in the range from 300 to 480 nm. Also, some additional peaks were recorded, corresponding to atomic and ionic lines for nitrogen, target material, and hydrogen, in all samples. The electron density (ne) was calculated from the measurement of Stark broadening effect, which was found to decrease with increasing pressure from 0.1 mba
... Show MoreThe main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu
... Show More