A new class of thiadiazole /silica nanocomposites with chemical bonds between thiadiazole monomers and modified nanosilica surface were synthesized by free radical polymerization. Presence silica nanoparticles in the structure of nanocomposite showed effectively improve the physical and chemical properties of Producing polymers. A nanocomposite material with feature properties comparison with their polymers, The structure and morphology of the synthesis materials were investigated by FT-IR spectrum which display preparation new thiadiazole compounds and polymerization monomers. FT-IR showed disappeared double bond (C=C) of monomers, due to produce long chains of thiadiazole polymers and nanocomposite. X-ray diffraction gave idea about crystalline structure of nanoparticles and nanocomposite , X-ray showed that silica nanoparticles have high intensity at 18000 , due to nanoscale of particles which allowed for particles aggregation together. While nanocomposite show low intensity due to reacted thiadaizole polymer chains with silica nanoparticles surface. The distribution of nanoparticles had characterized by Atomic forces microscopy AFM. AFM results shown roughness in the surfaces of nanocomposites C1 and C2, comparison with silica nanoparticles which gave smooth surface. The roughness attributed to reaction between functionalized surface of silica nanoparticles and chains of thiadaizole polymers, which led to change in size particles distribution and surface of particles that refer to nanocomposite.
The ligand 2-Hydroxy-N-pyridin-2-ylmethyl-acetamide(L) has been prepared from reaction of 2-(aminomethyl)pyridin with chloroacetic acid (1:1).It has been characterized by elemental analysis (C,H,N) ,'H, 13 C-NMR, IR and electronic spectra. The complexes of divalent (Co,Ni,Cu,Zn,Cd and Hg) ions and trivalent(Cr) ion have been synthesized and characterized by IR, electronic spectra, molar conductivity, atomic absorption and molar ratio (Ni 2+) complex. The analytical studies for the complexes show; octahedral for (Cr 3+),square planar for (Cu 2+) and (Co,Ni Zn, Cd and Hg) tetrahedral geometries. The study of biological activity of the ligand (L) and its complexes (Co,Ni,Cu,Cd,Hg) in two deferent concentration (1and5) mg/ml showed various acti
... Show MoreThe reaction of L-ascorbic acid with the chloroacetic acid in presence of potassium hydroxide has been investigated. The new product L (2,3,5,6-O,O,O,O-tetraacetic acid L-ascorbic acid) was isolated and characterized by elemental analysis(C.H), 1H, 13C-NMR. Mass spectrum and Fourier transform infrared (FT-IR). The reaction of the ligand (L) (where L = H4L), M+2 = (Co, Ni, Cu, Cd, Pb, Hg, Ca, Mg) has been investigated and was isolated and characterized by FT-IR, UV- visible, conductivity, Atomic absorption and molar ratio (Cd, Co) complexes. Spectroscopic evidence showed that the binding of the M(II) ions are throughy the O-1 Lacton, O-2-OCH2COOH and O-6-O
... Show MorePurpose: To use the L25 Taguchi orthogonal array for optimizing the three main solvothermal parameters that affect the synthesis of metal-organic frameworks-5 (MOF-5). Methods: The L25 Taguchi methodology was used to study various parameters that affect the degree of crystallinity (DOC) of MOF-5. The parameters comprised temperature of synthesis, duration of synthesis, and ratio of the solvent, N,N-dimethyl formamide (DMF) to reactants. For each parameter, the volume of DMF was varied while keeping the weight of reactants constant. The weights of 1,4-benzodicarboxylate (BDC) and Zn(NO3)2.6H2O used were 0.390 g and 2.166 g, respectively. For each parameter investigated, five different levels were used. The MOF-5 samples were synthesi
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
In this study, chemical oxidation was employed for the synthesis of polypyrrole (PPy) nanofiber. Furthermore, PPy has been subjected to treatment using nanoparticles of neodymium oxide (Nd2O3), which were produced and added in a certain ratio. The inquiry centered on the structural characteristics of the blend of polypyrrole and neodymium oxide after their combination. The investigation utilises X-ray diffraction (XRD), FTIR, and Field Emission Scanning Electron Microscopy (FE-SEM) for PPy, 10%, 30%, and 50% by volume of Nd2O3. According to the electrochemical tests, it has been noted that the nanocomposites exhibit a substantial amount of pseudocapacitive activity.
1,3- Oxazepines, benz [1,2-e] [1,3]-oxazepines, and 3- nitrobenz [1,2-e] [1,3] - oxazepines were reacted with ammonia derivatives, H2N-Z .. to give 1,3 – diazepine -4,7- dione, benzodiazepine - 4,7- dione, and 3 – nitrobenzo -1,3- diazepine - 4,7- dione, respectively.
In this investigation, water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals), utilizing N-acetyl cysteine as a stabilizer, were prepared to assess their potential in differentiating between DNA extracted from pathogenic bacteria (e.g. Escherichia coli isolated from urine specimen) and intact DNA (extracted from blood of healthy individuals) for biomedical sensing prospective. Following the optical characterization of the synthesized QDs, the XRD analysis illustrated the construction of NAC-CdTe-QDs with a grain size of 7.1 nm. The prepared NAC-CdTe-QDs exhibited higher PL emission features at of 550 nm and UV-Vis absorption peak at 300 nm. Additionally, the energy gap quantified via PL and UV–Vis were 2.2 eV
... Show More