In this paper we used Hosoya polynomial ofgroupgraphs Z1,...,Z26 after representing each group as graph and using Dihedral group to"encrypt the plain texts with the immersion property which provided Hosoya polynomial to immerse the cipher text in another"cipher text to become very"difficult to solve.
Let be a connected graph with vertices set and edges set . The ordinary distance between any two vertices of is a mapping from into a nonnegative integer number such that is the length of a shortest path. The maximum distance between two subsets and of is the maximum distance between any two vertices and such that belong to and belong to . In this paper, we take a special case of maximum distance when consists of one vertex and consists of vertices, . This distance is defined by: where is the order of a graph .
In this paper, we defined – polynomials based on
... Show MoreIn this paper, we show that for the alternating group An, the class C of n- cycle, CC covers An for n when n = 4k + 1 > 5 and odd. This class splits into two classes of An denoted by C and C/, CC= C/C/ was found.
For any group G, we define G/H (read” G mod H”) to be the set of left cosets of H in G and this set forms a group under the operation (a)(bH) = abH. The character table of rational representations study to gain the K( SL(2,81)) and K( SL(2, 729)) in this work.
A factor group is a mathematical group obtained by aggregating similar elements of a larger group using an equivalence relation that preserves some of the group structure. In this paper, the factor groups K(SL(2,121)) and K(SL(2,169)) computed for each group from the character table of rational representations.
The group for the multiplication of closets is the set G|N of all closets of N in G, if G is a group and N is a normal subgroup of G. The term “G by N factor group” describes this set. In the quotient group G|N, N is the identity element. In this paper, we procure K(SL(2,125)) and K(SL(2,3125)) from the character table of rational representations for each group.
Background: Mini implant stability is primarily related to local bone density; no studies have evaluated bone density related to mini implant placement for orthodontic anchorage between different age groups in the maxilla and the mandible. The present research aims to evaluate side, gender, age, and regional differences in bone density of the alveolar bone at various orthodontic implant sites. Materials and method: Fifty three individuals who were divided into two groups according to their age into: group I (ages 16-20 years) and group II (ages 21-29 years) had subjected to clinical examination, then 64-multislice computed tomography scan data were evaluated and bone density was measured in Hounsfield unit at 102 points (51 in the maxilla
... Show More