Preferred Language
Articles
/
jih-2002
The Approximation Solution of a Nonlinear Parabolic Boundary Value Problem Via Galerkin Finite Elements Method with Crank-Nicolson

    This paper deals with finding the approximation solution of a nonlinear parabolic boundary value problem (NLPBVP) by using the Galekin finite element method (GFEM) in space and Crank Nicolson (CN) scheme in time, the problem then reduce to solve a Galerkin nonlinear algebraic system(GNLAS). The predictor and the corrector technique (PCT) is applied here to solve the GNLAS, by transforms it to a Galerkin linear algebraic system (GLAS). This GLAS is solved once using the Cholesky method (CHM) as it appear in the matlab package and once again using the Cholesky reduction order technique (CHROT) which we employ it here to save a massive time. The results, for CHROT are given by tables and figures and show the efficiency of this method, from other sides we conclude that the both methods are given the same results, but the CHROT is very fast than the CHM.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
International Journal Of Mechanical Engineering And Robotics Research
Proportional-Derivative PD Vibration Control with Adaptive Approximation Compensator for a Nonlinear Smart Thin Beam Interacting with Fluid

This work is concerned with the vibration attenuation of a smart beam interacting with fluid using proportional-derivative PD control and adaptive approximation compensator AAC. The role of the AAC is to improve the PD performance by compensating for unmodelled dynamics using the concept of function approximation technique FAT. The key idea is to represent the unknown parameters using the weighting coefficient and basis function matrices/vectors. The weighting coefficient vector is updated using Lyapunov theory. This controller is applied to a flexible beam provided with surface bonded piezo-patches while the vibrating beam system is submerged in a fluid. Two main effects are considered: 1) axial stretching of the vibrating beam that leads

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
An Approximate solution for two points oundary value problem corresponding to some optimal control

this paper presents a novel method for solving nonlinear optimal conrol problems of regular type via its equivalent two points boundary value problems using the non-classical

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
On Blow-up Solutions of A Parabolic System Coupled in Both Equations and Boundary Conditions

This paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.

Scopus (10)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Classical Continuous Mixed Optimal Control of Couple Nonlinear Parabolic Partial Differential Equations with State Constraints

In this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Dec 29 2016
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Explicit Finite Difference Approximation for the TwoDimensional Fractional Dispersion Equation

  In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation.  The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation

View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach of Morgan-Voyce Polynomial to Solve Three Point Boundary Value Problems

In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.

Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
A Numerical scheme to Solve Boundary Value Problems Involving Singular Perturbation

The Wang-Ball polynomials operational matrices of the derivatives are used in this study to solve singular perturbed second-order differential equations (SPSODEs) with boundary conditions. Using the matrix of Wang-Ball polynomials, the main singular perturbation problem is converted into linear algebraic equation systems. The coefficients of the required approximate solution are obtained from the solution of this system. The residual correction approach was also used to improve an error, and the results were compared to other reported numerical methods. Several examples are used to illustrate both the reliability and usefulness of the Wang-Ball operational matrices. The Wang Ball approach has the ability to improve the outcomes by minimi

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Nov 01 2013
Journal Name
East Asian Journal On Applied Mathematics
Free Boundary Determination in Nonlinear Diffusion
Abstract<p>Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the <italic>lsqnonlin</italic> routine from the MATLAB toolbox. Accurate and stable numerical solutions are achieved. For noisy data, inst</p> ... Show More
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Apr 17 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Energy Methods For Initial –Boundary String Problem

  We study one example of hyperbolic problems it's Initial-boundary string problem with two ends. In fact we look for the solution in weak sense in some sobolev spaces. Also we use energy technic with Galerkin's method to study some properties for our problem as existence and uniqueness

View Publication Preview PDF
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Science
Numerical Solution for Two-Sided Stefan Problem

     In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw

... Show More
Scopus (6)
Crossref (1)
Scopus Crossref
View Publication Preview PDF