The current study is the identification and isolation dermatophyte species in clinical isolates by both Sabouraud’s Dextrose Agar (SDA) and on Dermatophyte Test Medium (DTM). Clinical specimens of hair, nails and skin scales were collected from patients with dermatophytosis and submitted to direct microscopic examination after immersion in 20% of potassium hydroxide solution. The clinical specimens were cultured on SDA containing chloramphenicol and cycloheximide, and on DTM. Tinea corporis showed the highest prevalent dermatophyte infection among patients (26.7%), followed by Tinea pedis (23.3%), whereas Tinea manuum exhibited the lowest fungal infection (6.7 %). Rural areas revealed the highest prevalence of dermatophyte infection (70.0 %) in comparison to 30.0% in urban areas. Based on the conventional laboratory methods, 30 clinical isolates of dermatophytes showed positive cultures which belong to three genera (Trichophyton, Microsporum and Epidermophyton). Trichophyton mentagrophytes was the most common species (21.7%) isolated among 30 positive dermatophytes, followed by Epidermophyton flocosum (17.4%), then Trichophyton bullosum and Trichophyton tonsurans (13.0%).
The present work evaluated the differences in mechanical properties of two athletic prosthetic feet samples when subjected to impact while running. Two feet samples designated as design A and B were manufactured using layers of different orientations of woven glass fiber reinforced with unsaturated polyester resin as bonding epoxy. The samples’ layers were fabricated with hand lay-up method. A theoretical study was carried out to calculate the mechanical properties of the composite material used in feet manufacturing, then experimental load-deflection test was applied at 0 degree position and 25 degree dorsiflexion feet position and impact test were applied for both feet designs to observe the behavior
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending on the mean square error criteria in where the estimation methods that were used are (Generalized Least Squares, M Robust, and Laplace), and for different sizes of samples (20, 40, 60, 80, 100, 120). The M robust method is demonstrated the best metho
... Show MoreIn this research, we studied the multiple linear regression models for two variables in the presence of the autocorrelation problem for the error term observations and when the error is distributed with general logistic distribution. The auto regression model is involved in the studying and analyzing of the relationship between the variables, and through this relationship, the forecasting is completed with the variables as values. A simulation technique is used for comparison methods depending
The main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
The pharmacokinetics and bioequivalence of a newly developed extended-released (ER) tablet containing 400 mg pentoxifylline as a test product was compared with the reference brand product Trental® 400 mg ER tablet produced by Sanofi-Aventis. Two separate studies were conducted simultaneously. The first study was conducted under fasting condition, whereas, the second study was conducted under fed condition; using the same batches of the test and reference products in both studies. In each study, both products were administered to 32 healthy male adult volunteers applying a single-dose, two-treatment, two-period, two-sequence, randomized crossover design with one-week washout period between dosing. Twenty two blood samples we
... Show MoreIn this paper simulation technique plays a vital role to compare between two approaches Maximum Likelihood method and Developed Least Square method to estimate the parameters of Frechet Poisson Lindley Distribution Compound. by coding using Matlab software program. Also, under different sample sizes via mean square error. As the results which obtain that Maximum Likelihood Estimation method is better than Developed Least Square method to estimate these parameters to the proposed distribution.
Drought is a natural phenomenon in many arid, semi-arid, or wet regions. This showed that no region worldwide is excluded from the occurrence of drought. Extreme droughts were caused by global weather warming and climate change. Therefore, it is essential to review the studies conducted on drought to use the recommendations made by the researchers on drought. The drought was classified into meteorological, agricultural, hydrological, and economic-social. In addition, researchers described the severity of the drought by using various indices which required different input data. The indices used by various researchers were the Joint Deficit Index (JDI), Effective Drought Index (EDI), Streamflow Drought Index (SDI), Sta
... Show MoreAbstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.