CdSe alloy has been prepared successfully from its high purity elements. Thin films of this alloy with different thicknesses (300,700)nm have been grown on glass substrates at room temperature under very low pressure (10-5)Torr with rate of deposition (1.7)nm/sec by thermal evaporation technique, after that these thin films have been heat treated under low pressure (10-2)Torr at (473,673)K for one hour. X-ray patterns showed that both CdSe alloy and thin films are polycrystalline and have the hexagonal structure with preferential orientation in the [100] and [002] direction respectively. The optical measurements indicated that CdSe thin films have allowed direct optical energy band gap, and it increases from (1.771.84) eV and from (1.6-1.65)eV with the increase in temperature from (R.T-673)K for thicknesses. (300,700)nm, respectively. The optical constants (refractive index, extinction coefficient and the real, imaginary parts of dielectric constant) were also studied.
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Chemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO p
... Show MoreCdO films were deposited on substrates from glass, Silicon and Porous silicon by thermal chemical spray pyrolysis technique with different thicknesses (130 and 438.46) nm. Measurements of X-ray diffraction of CdO thin film proved that the structure of the Polycrystalline is cubic lattice, and its crystallite size is located within nano scale range where the perfect orientation is (200). The results show that the surface’s roughness and the root mean square increased with increasing the thickness of prepared films. The UV-Visible measurements show that the CdO films with different thicknesses possess an allowed direct transition with band gap (4) eV. AFM measurement revealed that the silicon porosity located in nano range. Cadmium oxide f
... Show MoreABSTRACT:In this paper, Cd10–xZnxS (x = 0.1, 0.3, 0.5) films were deposited by using chemical spray pyrolysis technique, the molar concentration precursor solution was 0.15 M/L. Depositions were done at 350°C on cleaned glass substrates. X-ray dif- fraction technique (XRD) studies for all the prepared film; all the films are crystalline with hexagonal structure .The optical properties of the prepared films were studied using measurements from VIS-UV-IR spectrophotometer at wave- length with the range 300 - 900 nm; the average transmission of the minimum doping ratio (Zn at 0.1%) was about 55% in the VIS region, it was decrease at the increasing of Zn concentration in the CdS films, The band gap of the doped CdS films was varied as 3.7, 3
... Show More The Manganese (Mn) thin films of obliquely and normal deposited were prepared by using thermal evaporation method at pressure 10-5 torr on glass substrate at room temperature. The optical properties of normal and obliquely deposited films are studied and also the effect of deposition angle on these properties. The deposition angle has great influence on the increase of the absorbance, absorption coefficient, extinction coefficient and imaginary dielectric constant and the decrease of the transmittance, reflectance, refractive index and real dielectric constant.
Chlorine doped SnS have been prepared utilizing chemical spray pyrolysis. The effects of chlorine concentration on the optical constants were studied. It was seen that the transmittance decreased with doping, while reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were increased as the doping percentage increased. The results show also that the skin depth decrease as the chlorine percentage increased which could be assure that it is transmittance related.
The fabricated Photodetector n-CdO /-Si factory thin films Altboukaraharara spatial silicon multi- crystallization of the type (n-Type) the deposition of a thin film of cadmium and at room temperature (300K) and thickness (300 ± 20nm) and the time of deposition (1.25sec) was antioxidant thin films cadmium (Cd) record temperature (673k) for one hour to the presence of air and calculated energy gap optical transitions electronic direct ( allowed ) a function of the absorption coefficient and permeability and reflectivity by recording the spectrum absorbance and permeability of the membrane record within the wavelengths (300 1100nm). was used several the bias ranged between 1-5 Volts. The results showed that this
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
Silver sulfide and the thin films Ag2Se0.8Te0.2 and Ag2Se0.8S0.2 created by the thermal evaporation process on glass with a thickness of 350 nm were examined for their structural and optical properties. These films were made at a temperature of 300 K. According to the X-ray diffraction investigation, the films are polycrystalline and have an initial orthorhombic phase. Using X-ray diffraction research, the crystallization orientations of Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2 (23.304, 49.91) were discovered (XRD). As (Ag2Se and Ag2Se0.8Te0.2 & Ag2Se0.8S0.2) absorption coefficient fell from (470-774) nm, the optical band gap increased (2.15 & 2 & 2.25eV). For instance, the characteristics of thin films made of Ag2Se0.8Te0.2 and Ag2Se0.8S0.2
... Show More