In this research CdTe and CdTe: Cu thin films with different doping ratios (1, 2, 3, 4 and 5) %, were deposited by thermal evaporation technique under vacuum on glass substrates at room temperature in thickness 450 nm. The measurements of electrical conductivity (σ), and activation energies (Ea1, Ea2), have been investigated on (CdTe) thin films as a function of doping ratios, as well as the effect of the heat treatment at (373, 423, and 473) K° for one hour on these measurements were calculated and all results are discussed. The electrical conductivity measurements show all films prepared contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the increasing (Cu) percentage in the sample except 5%. It is also noticed that the electrical conductivity (σ) showed a decreasing trend with increasing annealing temperature, while the activation energies (Ea1, Ea2) showed opposite trend, where the activation energies increased with annealing temperature. Also the electrical conductivity values was found increased about 3- 4 orders when pure CdTe films are doped with (3, 4) % Cu and annealing at 473 K°.
Economic organizations operate in a dynamic environment, which necessitates the use of quantitative techniques to make their decisions. Here, the role of forecasting production plans emerges. So, this study aims to the analysis of the results of applying forecasting methods to production plans for the past years, in the Diyala State Company for Electrical Industries.
The Diyala State Company for Electrical Industries was chosen as a field of research for its role in providing distinguished products as well as the development and growth of its products and quality, and because it produces many products, and the study period was limited to ten years, from 2010 to 2019. This study used the descriptive approa
... Show MoreIn this research PbS and PbS:Cu films were prepered with thicknesses (0.85±0.05)?m and (0.55±0.5)?m deposit on glass and silicon substrate respectively using chemical spray pyrolysis technique with a substrate temperature 573K, from lead nitrate salt, thiourea and copper chloride. Using XRD we study the structure properties for the undoped and doped films with copper .The analysis reveals that the structure of films were cubic polycrystalline FCC with a preferred orientation along (200) plane for the undoped films and 1% doping with copper but the orientation of (111) plane is preferred with 5% doping with the rest new peaks of films and appeared because of doping. Surface topography using optical microscope were be checked, it was found
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Background: The immunogenetic predisposition
may be considered as an important factor for the
development of Type 1 Diabetes Mellitus (T1DM)
in association with the HLA antigens.
Objective:This study was designed to investigate
the role of HLA-class II antigens in the etiology of
type T1DM and in prediction of this disease in
siblings, and its effect on expression of glutamic
acid decarboxylase autoantibodies (GADA).
methods:Sixty children who were newly diagnosed
type 1 diabetes (diagnosed less than five months)
were selected. Their age ranged from 3-17 years.
Another 50 healthy siblings were available for this
study, their ages range from 3-16 years. Eighty
apparently healthy control subjects,
The results of research to reach the conditions that prevents the emergence of primary or secondary voids and achieve worker benefit from molded by almost 100%, which was the situation that cast poured in a mold heated and insulated from all sides to achieve freezing directional full starting from the region remote from the casting and ending then. Has also been compared to the microscopic structure of the resulting castings of various molding conditions, as these conditions have achieved the best sound microscopic structures.
Mature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show MoreThe size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio