By using precipitation polymerization, liquid electrodes of polymers imprinted with Mebeverine hydrochloride and metronidazole benzoate were created whereas the imprinted polymer (MIP) and non imprinted (NIP) polymers were prepared by using Mebeverine hydrochloride and Metronidazole benzoate qua a template. In the polymerization process, 2-Acrylamido-2-methyl-1-propane Sulphonic acid (AMPS) or 1-Vinylimidazole (VIZ) was used qua monomer, pentaerythritol triacrylate (PETRA) or Divinylbanzene (DVB) was used qua a cross-linker while benzoyl peroxide (BPO) was used as an initiator. The MIP membranes and the membranes of NIP were created by using Dibutyl Sebacate (DBS) and Tris(2-ethylhexyl)phosphate(TEHP) qua plasticizers in PVC matrix. The response time of the liquid electrodes was 1min. whereas their slopes and detection limits reached to 19.62 – 57.36 mV per decade and 1.2 x 10-6 – 2.0 x 10-5 M, respectively. Filling with standard solution of drug (0.1M), the liquid electrodes response -with suitable No.( selectivity for numerous of species - was suitable No.( since pH reached to 1.5 – 12. The developed electrodes were successfully applied for the analyte determination in preparation pharmaceutical sample without any time consuming pretreatment steps.
A simple, rapid and environmentally friendly dispersive liquid–liquid microextraction method-based spectrophotometric method for the trace determination of folic acid has been developed. The proposed method is based on the formation of a deep yellow product via reaction of folic acid and 1,2-naphthoquine-4-sulfonate at pH = 9. The formed complex was extracted using a mixture of chloroform and ethanol. Then, the tiny organic droplets were measured at λ = 520 nm. At the optimum conditions, linearity was ranged from 0.05 to 1.5 μg/mL for the standard and samples, with a linear correlation coefficient of 0.9996. The detection limits were 0.02, 0.027, 0.03, 0.02 and 0.04 μg/mL for standard, tablet (5 mg), tablet (1 mg), syrup and fl
... Show MoreIncident laser power and concentration effects on fluorescence emission from DCM dye in PMMA polymer have been investigated. Different concentrations of the dye were used. It was found that the fluorescence intensity increased with increasing of the concentration of the dye, with a red shift. In addition, it was found that the fluorescence intensity increased with the increase of the incident laser power I0.
Continuous flow injection analysis (CFIA) is one of the simplest, easiest, and multilateral analytical automation methods in moist chemical analysis. This method depends on changing the physical and chemical properties of a part of the specimen spread out from the specimen injected into the carrier stream. The CFIA technique uses automatic analysis of samples with high efficiency. The CFIA PC compatibility also allows specimens to be treated automatically, reagents to be added, and reaction conditions to be closely monitored. The CFIA is one of the automated chemical analysis methods in which a successive specimen sample is to be estimated and injected into a vector stream from a flowing solution that meets the reagent and mixes at a spe
... Show MoreObjective: To determine the quality assurance for maternal and child health care services in Baghdad City.
Methodology: A descriptive study is conducted throughout the period of November 28th 2008 to October 10th
2009. A simple random sample of (349) is selected through the use of probability sampling approach. The study
sample was divided into four groups which include (220) consumers, (35) medical staff, (72) nursing staff and (22)
organization structure (primary health care centers). Data were collected through the use of assessment tools. It was
comprised of four questionnaires and overall items included in these questionnaires are (116) items. The study
included assessment of organization structure. Data were colle
A precise, simple, and accurate continuous flow injection technique was used for the instantaneous estimation of bromhexine hydrochloride (BH-HCl) in tablet dosage form. The chemical and physical parameters of the reaction of BH-HCl with tetraphenylborate to produce a yellowish-white precipitate were determined using an ISNAG fluorimeter analyzer and diverging light at 90°. The calibration curve for BH-HCl was linear with correlation coefficients of 0.9994 and linearity percentage r2% = 99.87 over a concentration range of 0.01-20 mmol/L, L.O.D = 0.3610 µg/125µL (0.007 mmol/L), and RSD% less than 0.3% for 3 and 13 mmol/L (five replicates). This approach was efficiently used to estimate the levels of BH-HCl in two distinct pharmaceutica
... Show More<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m
... Show MoreIn this work, carbon-doped copper oxide thin films were deposited by the reactive DC sputtering method for use as selective absorbents. The properties of the DC discharge plasma were studied, using the emission spectrum, in the presence of pure argon and by mixing it with oxygen once and carbon dioxide again to know the effect of adding these gases on the properties of the resulting plasma used in the deposition of films. The structural properties of the deposited thin films prepared with different flow ratio of carbon dioxide gas were studied using x-ray diffraction. To examine the selective absorber coatings, the reflectance within the UV-Vis spectrum was measured to calculate the percentage of energy absorbed by solar radia
... Show MoreElectrochemical oxidation in the presence of sodium chloride used for removal of phenol and any other organic by products formed during the electrolysis by using MnO2/graphite electrode. The performance of the electrode was evaluated in terms fraction of phenol and the formed organic by products removed during the electrolysis process. The results showed that the electrochemical oxidation process was very effective in the removal of phenol and the other organics, where the removal percentage of phenol was 97.33%, and the final value of TOC was 6.985 ppm after 4 hours and by using a speed of rotation of the MnO2 electrode equal to 200 rpm.