Preferred Language
Articles
/
jih-1847
Detection and Detoxification of Aflatoxin B1 from Fish Feedstuff Using Microwave and Ozone Gas
...Show More Authors

    The current study was designed to investigate the occurrence of aflatoxin B1 in thirty two samples of fish feedstuff were collected randomly from some Iraqi local markets using ELISA technique. Aflatoxin B1 was detected in thirty samples and the concentration of toxin ranged from 50 ppb to 1000 ppb.  

   Microwave and ozone were used for detoxification of aflatoxin B1 from sample with highest concentration (1000 ppb), two degree of temperature and two times (50°C and 100°C for 5 minute and 10 minute to each degree) of microwave, also two doses and two times (2 g and 4 g for 5 minute and 10 minute to each dose) of ozone gas were used.

   Degradation of aflatoxin B1 by microwave has been found to cause a significant (P ≤ 0.05) decrease of aflatoxin B1, Moreover, the concentration of aflatoxin B1 was dependent on temperature degrees and exposure time, also sample subjected to ozone gas caused a significant (P ≤ 0.05) decrease in aflatoxin B1 contents and the concentration of aflatoxin B1 was dependent on doses and times of exposure. Results showed that ozone gas was more effective in aflatoxin B1 reduction when compared with microwave.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes In Electrical Engineering
A Study of the Influence of Steel Brushes in Rail Surface Magnetic Flux Leakage Detection Using Finite Elements Simulation
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

View Publication
Scopus (58)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Scopus (58)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Swarm And Evolutionary Computation
A review of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging development and future directions
...Show More Authors

Sensibly highlighting the hidden structures of many real-world networks has attracted growing interest and triggered a vast array of techniques on what is called nowadays community detection (CD) problem. Non-deterministic metaheuristics are proved to competitively transcending the limits of the counterpart deterministic heuristics in solving community detection problem. Despite the increasing interest, most of the existing metaheuristic based community detection (MCD) algorithms reflect one traditional language. Generally, they tend to explicitly project some features of real communities into different definitions of single or multi-objective optimization functions. The design of other operators, however, remains canonical lacking any inte

... Show More
Scopus (58)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Revue D'intelligence Artificielle
Performance Evaluation of SDN DDoS Attack Detection and Mitigation Based Random Forest and K-Nearest Neighbors Machine Learning Algorithms
...Show More Authors

Software-defined networks (SDN) have a centralized control architecture that makes them a tempting target for cyber attackers. One of the major threats is distributed denial of service (DDoS) attacks. It aims to exhaust network resources to make its services unavailable to legitimate users. DDoS attack detection based on machine learning algorithms is considered one of the most used techniques in SDN security. In this paper, four machine learning techniques (Random Forest, K-nearest neighbors, Naive Bayes, and Logistic Regression) have been tested to detect DDoS attacks. Also, a mitigation technique has been used to eliminate the attack effect on SDN. RF and KNN were selected because of their high accuracy results. Three types of ne

... Show More
View Publication
Scopus (16)
Crossref (6)
Scopus Crossref
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
The Impact of using the Internet and Social Media on Sleep in a group of Secondary School Students from Baghdad
...Show More Authors

Background: Insufficient sleep due to excessive media use is linked to decrease physical activity, poor nutrition, obesity, and decreased overall health-related quality of life.

Objectives: To assess the effect of using the internet and social media on the sleep of 4th-stage secondary school students.

Subjects and Methods: Cross-sectional study with the analytic element; for 500 secondary school students, obtained by choosing two schools randomly from each of the six educational directorates, by using a structured questionnaire.

Result: Secondary scho

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Fifth International Conference On Applied Sciences: Icas2023
Facial deepfake performance evaluation based on three detection tools: MTCNN, Dlib, and MediaPipe
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Intelligent Engineering And Systems
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Tue Dec 20 2022
Journal Name
2022 4th International Conference On Current Research In Engineering And Science Applications (iccresa)
Noise Detection and Removing in Heart Sound Signals via Nuclear Norm Minimization Problems
...Show More Authors

Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Aug 28 2024
Journal Name
Mesopotamian Journal Of Cybersecurity
A Novel Anomaly Intrusion Detection Method based on RNA Encoding and ResNet50 Model
...Show More Authors

Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a

... Show More
View Publication
Scopus (2)
Scopus Crossref