With the fast progress of information technology and the computer networks, it becomes very easy to reproduce and share the geospatial data due to its digital styles. Therefore, the usage of geospatial data suffers from various problems such as data authentication, ownership proffering, and illegal copying ,etc. These problems can represent the big challenge to future uses of the geospatial data. This paper introduces a new watermarking scheme to ensure the copyright protection of the digital vector map. The main idea of proposed scheme is based on transforming the digital map to frequently domain using the Singular Value Decomposition (SVD) in order to determine suitable areas to insert the watermark data. The digital map is separated into the isolated parts.Watermark data are embedded within the nominated magnitudes in each part when satisfied the definite criteria. The efficiency of proposed watermarking scheme is assessed within statistical measures based on two factors which are fidelity and robustness. Experimental results demonstrate the proposed watermarking scheme representing ideal trade off for disagreement issue between distortion amount and robustness. Also, the proposed scheme shows robust resistance for many kinds of attacks.
The research aims to presenting a number of scenarios for the investment of the marshes. The problem of research problem was that there is no in-depth analysis of the marshes environment. The traditional methods of the environmental analysis are insufficient. The research community is represented by the decision makers in Maysan Governorate. The research led to proposing of three scenarios with statement the requirements for the success of each one. The most important conclusions are that the three proposed scenarios for marshes investment depend on the availability of the required volunteers for each scenario. The higher the availability of the requirements, the more optimistic the scenario becomes. If t
... Show MoreBackground: Accurate measurement of a patient’s height and weight is an essential part of diagnosis and therapy, but there is some controversy as to how to calculate the height and weight of patients with disabilities. Objective: This study aims to use anthropometric measurements (arm span, length of leg, chest circumference, and waist circumference) to find a model (alternatives) that can allow the calculation of the height and the body weight of patients with disabilities. Additionally, a model for the prediction of weight and height measurements of patients with disabilities was established. Method: Four hander patients aged 20-80 years were enrolled in this study and divided into two groups, 210 (52.5%) male and 190 (47.5%) fe
... Show MoreIn this paper, the homotopy perturbation method (HPM) is presented for treating a linear system of second-kind mixed Volterra-Fredholm integral equations. The method is based on constructing the series whose summation is the solution of the considered system. Convergence of constructed series is discussed and its proof is given; also, the error estimation is obtained. Algorithm is suggested and applied on several examples and the results are computed by using MATLAB (R2015a). To show the accuracy of the results and the effectiveness of the method, the approximate solutions of some examples are compared with the exact solution by computing the absolute errors.
The deployment of UAVs is one of the key challenges in UAV-based communications while using UAVs for IoT applications. In this article, a new scheme for energy efficient data collection with a deadline time for the Internet of things (IoT) using the Unmanned Aerial Vehicles (UAV) is presented. We provided a new data collection method, which was set to collect IoT node data by providing an efficient deployment and mobility of multiple UAV, used to collect data from ground internet of things devices in a given deadline time. In the proposed method, data collection was done with minimum energy consumption of IoTs as well as UAVs. In order to find an optimal solution to this problem, we will first provide a mixed integer linear programming m
... Show MoreDecision-making in Operations Research is the main point in various studies in our real-life applications. However, these different studies focus on this topic. One drawback some of their studies are restricted and have not addressed the nature of values in terms of imprecise data (ID). This paper thus deals with two contributions. First, decreasing the total costs by classifying subsets of costs. Second, improving the optimality solution by the Hungarian assignment approach. This newly proposed method is called fuzzy sub-Triangular form (FS-TF) under ID. The results obtained are exquisite as compared with previous methods including, robust ranking technique, arithmetic operations, magnitude ranking method and centroid ranking method. This
... Show MoreWorld statistics declare that aging has direct correlations with more and more health problems with comorbid conditions. As healthcare communities evolve with a massive amount of data at a faster pace, it is essential to predict, assist, and prevent diseases at the right time, especially for elders. Similarly, many researchers have discussed that elders suffer extensively due to chronic health conditions. This work was performed to review literature studies on prediction systems for various chronic illnesses of elderly people. Most of the reviewed papers proposed machine learning prediction models combined with, or without, other related intelligence techniques for chronic disease detection of elderly patie
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain
... Show More