Preferred Language
Articles
/
jih-1817
Local Search Algorithms for Multi-criteria Single Machine Scheduling Problem
...Show More Authors

   Real life scheduling problems require the decision maker to consider a number of criteria before arriving at any decision. In this paper, we consider the multi-criteria scheduling problem of n jobs on single machine to minimize a function of five criteria denoted by total completion times (∑), total tardiness (∑), total earliness (∑), maximum tardiness () and maximum earliness (). The single machine total tardiness problem and total earliness problem are already NP-hard, so the considered problem is strongly NP-hard.

We apply two local search algorithms (LSAs) descent method (DM) and simulated annealing method (SM) for the 1// (∑∑∑) problem (SP) to find near optimal solutions. The local search methods are used to speed up the process of finding a good enough solution, where an exhaustive search is impractical for the exact solution. The two heuristic (DM and SM) were compared with the branch and bound (BAB) algorithm in order to evaluate effectiveness of the solution methods.

            Some experimental results are presented to show the applicability of the (BAB) algorithm and (LSAs). With a reasonable time, (LSAs) may solve the problem (SP) up to 5000 jobs.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Iraqi Journal Of Science
Survey For Arabic Part of Speech Tagging based on Machine Learning
...Show More Authors

      The Arabic Language is the native tongue of more than 400 million people around the world,  it is also a language that carries an important religious and international weight.  The Arabic language has taken its share of the huge technological explosion that has swept the world, and therefore it needs to be addressed with natural language processing applications and tasks.

This paper aims to survey and gather the most recent research related to Arabic Part of Speech (APoS), pointing to tagger methods used for the Arabic language, which ought to aim to constructing corpus for Arabic tongue. Many AI investigators and researchers have worked and performed POS utilizing various machine-learning methods, such as Hidden-Mark

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 14 2022
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Mathematical simulation of memristive for classification in machine learning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Mar 03 2019
Journal Name
Iraqi Journal Of Physics
Experimental observation of the far field diffraction patterns of functionalization single and multi-walled carbon nanotubes using nonlinear diffraction technique
...Show More Authors

Nonlinear diffraction pattern can be induced by focusing CW
laser into a thin quartzes cuvette containing nanofluid. The number
of revealed pattern rings indicates to the nonlinear behavior of fluid.
Here, the nonlinear refractive index of each of functionalized single
wall carbon nanotube (F-SWCNTs) suspention and multi wall carbon
nanotube (F-MWCNTs) suspention have been investigated
experimentally .Each of CNTs suspention was at volume fraction of
13×10−5 and 6×10−5. Moreover the laser source at wavelength of
473 nm was used. The results show that SWCNTs suspention
possesses higher nonlinearty than other at the same volume fraction

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Design of Multi-Rate Multi-Zone Wireless Fuzzy Temperature Control System for Greenhouse Application
...Show More Authors

sensor sampling rate (SSR) may be an effective and crucial field in networked control systems.  Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 28 2023
Journal Name
Iraqi Journal Of Science
Hybrid Techniques with Support Vector Machine for Improving Artifact Ultrasound Images
...Show More Authors

     The most common artifacts in ultrasound (US) imaging are reverberation and comet-tail. These are multiple reflection echoing the interface that causing them, and result in ghost echoes in the ultrasound image. A method to reduce these unwanted artifacts using a Otsu thresholding to find region of interest (reflection echoes) and output applied to median filter to remove noise. The developed method significantly reduced the magnitude of the reverberation and comet-tail artifacts. Support Vector Machine (SVM) algorithm is most suitable for hyperplane differentiate. For that, we use image enhancement, extraction of feature, region of interest, Otsu thresholding, and finally classification image datasets to normal or abnormal image.

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
A Methodology for Evaluating and Scheduling Preventive Maintenance for a Thermo-Electric Unit Using Artificial Intelligence
...Show More Authors

Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 02 2024
Journal Name
Petroleum And Coal
Wellbore Instability Analysis to Determine the Failure Criteria for Deep Well/H Oilfield
...Show More Authors

View Publication
Scopus