In real situations all observations and measurements are not exact numbers but more or less non-exact, also called fuzzy. So, in this paper, we use approximate non-Bayesian computational methods to estimate inverse Weibull parameters and reliability function with fuzzy data. The maximum likelihood and moment estimations are obtained as non-Bayesian estimation. The maximum likelihood estimators have been derived numerically based on two iterative techniques namely “Newton-Raphson†and the “Expectation-Maximization†techniques. In addition, we provide compared numerically through Monte-Carlo simulation study to obtained estimates of the parameters and reliability function in terms of their mean squared error values and integrated mean squared error values respectively.
In recent years, non-oil primary balance indicator has been given considerable financial important in rentier state. It highly depends on this indicator to afford a clear and proper picture of public finance situation in term of appropriate and sustainability in these countries, due to it excludes the effect of oil- rental from compound of financial accounts which provide sufficient information to economic policy makers of how economy is able to create potential added value and then changes by eliminating one sided shades of economy. In Iraq, since, 2004, the deficit in value of this indicator has increased, due to almost complete dependence on the revenues of the oil to finance the budget and the obvious decline of the non-oil s
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreThe estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique
... Show MoreAge and BMI may be used to diagnosis of thyroid autoimmune disease. One hundred Iraqi women with age ranged from 18 to 60 years participate in this research, 50 of them were hypothyroidism patients, 30 were hyperthyroidism patients and the other 20 were euthyroidism served as controls. Blood samples were collected from the studied subjects to determine thyroid profile [free triiodothyronine (FT3), free tetraiodothyronine (FT4) and thyroid stimulating hormone (TSH)], thyroid antibodies [anti-thyroid peroxidase (anti-TPO), anti-thyroglobulin (anti-Tg), and anti-thyroid stimulating hormone receptor (anti-TSHR)], and levels of vitamin D (vit D), calcium (Ca), and phosphorus (P) using different analysis techniques. When the effect of age
... Show MoreBackground: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreThe Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"
This study was conducted in Baghdad, Iraq from December 2021 to May 2022. The goal was to determine the effect of Toxoplasma gondii on liver function by examining the relationship between Toxoplasma infection and hormones. One hundred and twenty male patients with Chronic liver disease (CLD) (age:14-75 years) and 120 control males (age: 24-70 years) participated in this study. Serum samples were taken from all individuals and were then analysed for anti-Toxoplasma antibodies. Hormonal tests were conducted for all participants which included (Cortisol, testosterone, prolactin, insulin, and thyroid-stimulating hormone TSH). Biochemical tests included (Prothrombin time PT, international normalized ratio INR and albumin); liver enzymes
... Show More