Preferred Language
Articles
/
jih-1679
Boltzmann Machine Neural Network for Arabic Speech Recognition
...Show More Authors

Boltzmann mach ine neural network bas been used to recognize the Arabic speech.  Fast Fourier transl(>lmation algorithm has been used t() extract speciral 'features from an a caustic signal .

The  spectral  feature size is reduced by series of operations in

order to make it salable as input for a neural network which is used as a recogni zer by Boltzmann Machine Neural  network which has been used as a recognizer for phonemes . A training set consist of a number of Arabic phoneme repesentations, is used to train lhe neuntl network.

The neural network recognized Arabic. After Boltzmann Machine Neura l    network   training  the  system   with   few  selected   Arabic phonemes, the results came out to be very encouragi ng .

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 08 2024
Journal Name
Optical And Quantum Electronics
5G passive optical network employing all optical-OFDM_Hybrid SSMF/FSO
...Show More Authors

In this paper, a new 5G Passive Optical Network (5G-PON) employing all-optical orthogonal frequency division multiplexing (AO-OFDM) is proposed in hybrid bidirectional standard single mode fiber (SSMF)/free space optical (FSO). Additionally, an optical frequency generator (OFG) source is utilized. The proposed model is simulated using VPI photonics software. Analytical modeling and simulations have been conducted for a new approach to generate OFG by cascaded two-frequency modulators and one electro-absorption modulator. A sinusoidal RF signal source is utilized to drive all these modulators. The results reveal that 64 optical multiplexed carriers with a frequency spacing of 30 GHz are generated. These optical carriers have power variations

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jul 30 2023
Journal Name
Iraqi Journal Of Science
Automatic Diagnosis of Coronavirus Using Conditional Generative Adversarial Network (CGAN)
...Show More Authors

     A global pandemic has emerged as a result of the widespread coronavirus disease (COVID-19). Deep learning (DL) techniques are used to diagnose COVID-19 based on many chest X-ray. Due to the scarcity of available X-ray images, the performance of DL for COVID-19 detection is lagging, underdeveloped, and suffering from overfitting. Overfitting happens when a network trains a function with an  incredibly high variance to represent the training data perfectly. Consequently, medical images lack the availability of large labeled datasets, and the annotation of medical images is expensive and time-consuming for experts. As the COVID-19 virus is an infectious disease, these datasets are scarce, and it is difficult to get large datasets

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Water Quality Assessment of Al-Najaf City Potable Water Network
...Show More Authors

 Water is an essential aspect of life and important in evolution. Recently the potable water quality topic has received much attention. The study aims to determine drinking water quality in Al-Najaf City by collecting samples throughout Al-Najaf city and comparing the results with the Iraqi guidelines (IQS 417) and World Health Organization (WHO) guidelines, as well as to calculate the WQI. Samples were tested in the laboratory between December 2021 and June 2022. The results showed that multiple parameters exceeded the allowable limits during both testing periods; during winter months, the results of TDS and turbidity exceeded the upper limits in multiple locations. Total hardness values also

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 20 2023
Journal Name
Migration Letters
Women's Image in Arabic Songs (An Analytical Study of how Women Appear in the Most Viewed Songs on YouTube for the Year 2021)
...Show More Authors

Preview PDF
Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Mon Oct 05 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval

Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Comparison between Radial Basis Function and Wavelet Basis Functions Neural Networks
...Show More Authors

      In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented

View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks
...Show More Authors

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
A Modified Support Vector Machine Classifiers Using Stochastic Gradient Descent with Application to Leukemia Cancer Type Dataset
...Show More Authors

Support vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca

... Show More
View Publication Preview PDF
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
IoT-Smart Agriculture: Comparative Study on Farming Applications and Disease Prediction of Apple Crop using Machine Learning
...Show More Authors

     Recently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref