Preferred Language
Articles
/
jih-1677
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of  the algorithm  to errors  in the measurements. Consider  a typical  boundary  value  problem  with  the

govern ing  differential  equation:  Lcp  = f, where  L  is a  differential

operator,  f is the forcing function and cp  is the unknown quant ity. This

di fferential  equation  can  be  solved  in  conjunction   wi th  boundary conditi ons  on  the  boundary  r enclosing  the domain.  A commonly

used  approach  to  solve  this   problem  is  to  use  the  finite  element approach.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT METHOD FOR INCOMPRESSIBLE VISCOELASTIC MATERIALS

A numerical method (F.E.)was derived for incompressible viscoelastic materials, the aging and
environmental phenomena especially the temperature effect was considered in this method. A
treatment of incompressibility was made for all permissible values of poisons ratio. A
mechanical model represents the incompressible viscoelastic materials and so the properties can
be derived using the Laplace transformations technique .A comparison was made with the other
methods interested with viscoelastic materials by applying the method on a cylinder of viscoelastic material surrounding by a steel casing and subjected to a constant internal pressure, as well as a comparison with another viscoelastic method and for Asphalt Concrete pro

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 20 2010
Journal Name
The International Journal Of Advanced Manufacturing Technology
Finite element modeling and simulation of proposed design magneto-rheological valve

Magneto-rheological (MR) valve is one of the devices generally used to control the speed of Hydraulic actuator of MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. A mathematical model for the MR valve is developed and the simulation is carried out to evaluate the newly developed MR valve. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMMR). The model dimensions of MR valve, material properties are taken into account. The results of analysis are presented in terms of magnetic strength H and magnetic flux density B. The simulation results based on the proposed model indicate that the ef

... Show More
Scopus (35)
Crossref (29)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Dec 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Finite Element Based Solution of Laplace's Equation Applied to Electrical Activity of the Human Body

Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.

The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.

Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.

This work describes t

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Fractional Hartley Transform and its Inverse

The Hartley transform generalizes to the fractional Hartley transform (FRHT) which gives various uses in different fields of image encryption. Unfortunately, the available literature of fractional Hartley transform is unable to provide its inversion theorem. So accordingly original function cannot retrieve directly, which restrict its applications. The intension of this paper is to propose inversion theorem of fractional Hartley transform to overcome this drawback. Moreover, some properties of fractional Hartley transform are discussed in this paper.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
On Training Of Feed Forward Neural Networks

In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.

View Publication Preview PDF
Publication Date
Thu Sep 05 2019
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Strongly (E,F)-convexity with applications to optimization problems

In this paper, a new class of nonconvex sets and functions called strongly -convex sets and strongly -convex functions are introduced. This class is considered as a natural extension of strongly -convex sets and functions introduced in the literature. Some basic and differentiability properties related to strongly -convex functions are discussed. As an application to optimization problems, some optimality properties of constrained optimization problems are proved. In these optimization problems, either the objective function or the inequality constraints functions are strongly -convex. 

Crossref (1)
Crossref
View Publication
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Residual Network with Attention to Neural Cells Segmentation

      Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the e

... Show More
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Optimized Artificial Neural network models to time series

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and

... Show More
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A Finite Element Analysis for the Damaged Rotating Composite Blade

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to ap

... Show More
View Publication Preview PDF