Preferred Language
Articles
/
jih-1650
Bounded Modules

Let R be a commutative ring with identity, and let M be a unitary (left) R- modul e. The ideal annRM  = {r E R;rm  = 0 V  mE M} plays a central

 

role  in  our  work.  In  fact,  we  shall  be  concemed   with  the  case  where annR1i1 = annR(x) for   some   x EM such  modules  will  be  called bounded  modules.[t  htrns out that there are many classes of modules properly contained in the class of bounded modules such as cyclic modules, torsion -G·ee modulcs,faithful  multiplication  modules,  prime modules and cyclic modules over  their endomorphism  rings. Also,  using  boundedness of  modules,  we showed that :

-  The  classes  of  injective modules modulo  annihi lator  and  quasi-injective

modules ru·e equivalent.

-  The  classes  of   faithful  modules  and  compactly   faithful  modules  are equi valent.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Z-Small Quasi-Dedekind Modules

     In this paper, we define and study z-small quasi-Dedekind as a generalization of small quasi-Dedekind modules. A submodule  of -module  is called z-small (  if whenever  , then . Also,  is called a z-small quasi-Dedekind module if for all  implies  . We also describe some of their properties and characterizations. Finally, some examples are given.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Quasi-Small Prime Modules
Abstract<p>Let R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.</p>
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Fully Small Dual Stable Modules

New types of modules named Fully Small Dual Stable Modules and Principally Small Dual Stable are studied and investigated. Both concepts are generalizations of Fully Dual Stable Modules and Principally Dual Stable Modules respectively. Our new concepts coincide when the module is Small Quasi-Projective, and by considering other kind of conditions. Characterizations and relations of these concepts and the concept of Small Duo Modules are investigated, where every fully small dual stable R-module M is small duo and the same for principally small dual stable.

View Publication Preview PDF
Publication Date
Wed Oct 28 2020
Journal Name
Iraqi Journal Of Science
On y-closed Rickart Modules

     In a previous work, Ali and Ghawi studied closed Rickart modules. The main purpose of this paper is to define and study the properties of y-closed Rickart modules .We prove that, Let  and   be two -modules such that  is singular. Then  is -y-closed Rickart module if and only if   Also, we study the direct sum  of  y-closed Rickart modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
T-Small Quasi-Dedekind modules
Abstract<p>Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if, <inline-formula> <tex-math><?CDATA $\forall \,w\,\in En{d}_{R}(Q),\,w\ne 0$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mrow> <mo>∀</mo> <mspace width="0.25em"></mspace> <mi>w</mi> <mspace width="0.25em"></mspace> <mo></mo></mrow></math></inline-formula></p> ... Show More
Scopus Crossref
View Publication
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
2-prime submodules of modules

      Let R be a commutative ring with unity. And let E be a unitary R-module. This paper introduces the notion of 2-prime submodules as a generalized concept of 2-prime ideal, where proper submodule H of module F over a ring R is said to be 2-prime if , for r R and x F implies that  or . we prove many properties for this kind of submodules, Let H is a submodule of module F over a ring R then H is a 2-prime submodule if and only if [N ] is a 2-prime submodule of E, where r R. Also, we prove that if F is a non-zero multiplication module, then [K: F] [H: F] for every submodule k of F such that H K. Furthermore, we will study the basic properties of this kind of submodules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
Small Pointwise M-Projective Modules

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Publication Date
Sun May 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Relative Quasi-Injective Modules

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injectiv

... Show More
View Publication Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Essential T- Weak Supplemented Modules

An R-module M is called ET-H-supplemented module if for each submodule X of M, there exists a direct summand D of M, such that T⊆X+K if and only if T⊆D+K, for every essential submodule K of M and T M. Also, let T, X and Y be submodules of a module M , then we say that Y is ET-weak supplemented of X in M if T⊆X+Y and (X⋂Y M. Also, we say that M is ET-weak supplemented module if each submodule of M has an ET-weak supplement in M. We give many characterizations of the ET-H-supplemented module and the ET-weak supplement. Also, we give the relation between the ET-H-supplemented and ET-lifting modules, along with the relationship between the ET weak -supplemented and ET-lifting modules.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF