The precursor [W] [2-(2-(naphthalen-5-yl) diazenyl)-4-amino-3-hydroxynaphthalene-1sulfonic acid] was synthesized from reaction of diazonium salt with 1-amino-2-naphtol-4sulfonic acid. Then the tridentate Schiff base ligand type ONO was synthesized from the reaction of the precursor with salicyaldehyde in 1:1 mole ratio to produce the ligand H2L [2-(2-(naphthalen5-yl) diazenyl)-4-(2-hydroxynaphthalen-3-yl)methyleneamino)-3-hydroxy salicyalene-1-sulfonic acid],the reaction achieved in methanol as a solvent under reflux. Spectroscopic methods IR, U.V, 1H,13C-NMR was used to characterize the ligand. Complexes of [CrIII, CoII, NiII and CdII] ions were also prepared through reaction of ligand with metal salts in 2:1 mole ratio at reflux, using KOH as a base, ethanol as a solvent. Chloride content, molar conductivity and melting point measurements along with I.R and U.V-Vis, atomic absorption (A.A) spectroscopy were used to characterize the complexes.1H-NMR spectroscopy was used to characterize Cd complex. Thermal analysis was used to insure the presence of crystallized H2O molecule in the complexes structure. The following formula was proposed for Cr complex: K[Cr(L)2]. H2O, while CoII, NiII and CdII complexes have the K2[M(L)2].H2O formula. The biological activity of the prepared compounds was studied. Fluorescence properties of the prepared compounds were studied (at room temperature) which indicate that the ligand may behave as strong fluorescent emitter. The complexes also showed fluorescence characteristic with the ligand. The ligand revealed high relative intensity and its fluorescence peak were also shifted to the lower or higher wavelength when compared with the complexes.
In this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show MoreThe new 4-[(7-chloro-2,1,3-benzoxadiazole)azo]-4,5-diphenyl imidazole (L) have been synthesized and characterized by micro elemental and thermal analyses as well as 1H.NMR, FT-IR, and UV-Vis spectroscopic techniques. (L) acts as a ligand coordinating with some metal ionsV(IV), Fe(III), Co(II), Ni(II), Cu(II), and Zn(II). Structures of the new compounds were characterized by elemental and thermal analyses as well as FT-IR and UV-Vis Spectra. The magnetic properties and electrical conductivities of metal complexes were also determined. Study of the nature of the complexes formed in ethanol following the mole ratio method.. The work also include a theoretical treatment of the formed complexes in the gas phase, this was done using the (hyperch
... Show MoreA new Schiff base [1-((2-(1H-indol-3-yl)ethylimino)methyl)naphthalene-2-ol] (HL) has been synthesized by condensing (2-hydroxy-1-naphthaldehyde) with (2-(1H-indol-3-yl)ethylamine). In turn, its transition metal complexes were prepared having the general formula; [Pt(IV)Cl2(L)2], [Re(V)Cl2(L)2]Cl and [Pd(L)2], 2K[M(II)Cl2(L)2] where M(II) = Co, Ni, Cu] are reported. Ligand as well as metal complexes are characterized by spectroscopic techniques such as FT-IR, UV-visible, 13C & 1H NMR, mass, elemental analysis. The results suggested that the ligand behaves like a bidentate ligand for all the synthesized complexes. On the other hand, theoretical studies of the ligand as well its metal complexes were conducted at gas phase using Hyp
... Show MoreIn this study, a new Azo ligand 5-((2-(1H-indol-2-yl)ethyl)diazinyl)-2-aminophenol is synthesized from a reaction of Tryptamine with 2-aminophenol. The ligand and their metal ion complexes Ni(II), Pd(II) , Pt(IV) and Au(III) have been synthesized and characterized by various analytical techniques, including elemental microanalysis, metal content, chloride-containing, measurement of electrical conductivity, magnetic susceptibility, 1H and 13C-NMR, FT-IR, UV-Vis, mass spectra (MS), and thermal analysis (TGA and DSC) curves. The DCS curve was used to calculate the thermodynamic parameters ΔH, ΔS, and ΔG. The characterization results promote the metal complexes of azo ligand structures. The results indicate that the
... Show MoreA new chelate complexes of Co(II),Ni(II),Zn(II) and Cd(II) were prepared by reacting these ions with the ligand 2-[4- Carboxy methyl phenyl azo]-4,5-diphenyl imidazole (4CMeI) The preparation were conducted after fixing the optimum conditions such as (pH) and concentration .UV- visible spectra of these complex solutions were studied for a range of (pH) and concentration which obey lampert-Beers Law.The structures of complexes were deduced according to mole ratio method which were obtained from the spectroscopic studies of the complex solutions .The ratios of metal: ligand obtained were (1:2) for all complexes..(UV-Vis) absorption spectra and The infrared spectra of the chelating complexes were studied ,this may indicate that coordination be
... Show MoreThe reaction of ethylenediamine with [2,4,6-trihydroxyacetophenon] and KOH (Schiff Base) to gives the new tetradentate ligand 2-(1-{2-{1-2,6-Dihydroxy-4-methyl phenyl)ethyliden amino}- ethylimino}-ethyl-benzene- 1,2,5-triol [HCl]. This ligand was reacted with some metal ions (Cu(II), Co(II), Ni(II), Zn(II), and Cd(II)) in methanol with (1:1) metal : ligand ratio to give a series of new complexes of the general formula [M(H4L)], where: M= Cu(11), Co(II), Ni(II), Zn(II), and Cd(II). All compounds were characterized by spectroscopic methods [I.R, U.V.-Vis, C.H.N., analysis H.P.L.C, atomic absorption, magnetic susceptibility, (EI-mass for the ligand)], and microanalysis along with conductivity measurements
... Show MoreThe complexes of Schiff base (6-[Hydroxy - benzylidene)-amino]-pyrimidine-2,4-diol ) (L) with Mn(II), Fe(II), Co(II) and Ni(II) were prepared. The Schiff base and complexes have been characterized by FT-IR, 1H-NMR, UV-Vis, LC-mass spectra, magnetic moment, elemental microanalyses (C.H.N.), chloride containing, atomic absorption and molar conductance.
The Schiff base, metal salts and complexes were also screened for their bioactivity such as antibacterial and antifungal.
Two Schiff base ligands L1 and L2 have been obtained by condensation of salicylaldehyde respectively with leucylalanine and glycylglycine then their complexes with Zn(II)were prepared and characterized by elemental analyses , conductivity measurement , IR and UV-Vis .The molar conductance measurement indicated that the Zn(II) complexes are 1:1 non-electrolytes. The IR data demonstrated that the tetradentate binding of the ligands L1 and L2 . The in vitro biological screening effect of the investigated compounds have been tested against the bacterial species Staphlococcus aureus, Escherichia coil , Klebsiella pneumaniae, Proteus vulgaris and Pseudomonas aeruginosa by the disc diffusion method . A comparative study of inhibition values of
... Show MoreA new Macrocyclic Schiff base ligand Bis[4-hydroxy(1,2-ethylene-dioxidebenzylidene) pheylenediamine] [H2L] and its complexes with (Co(II) , Ni(II) , Cu(II) , Zn(II) and Cd(II)) are reported . The ligand was prepared in two steps,in the first step a solution of (o-phenylene diamine) in methanol react under reflux with (2,4-dihydroxybenzylaldeyed) to give an (intermediatecompound) [Bis-1,2 (2,4-dihydroxybenzylediene)pheylinediamine] which react in the second step with (1,2- dichloro ethane) giving the mentioned ligand.Then the complexes were synthesis of adding of corresponding metal salts to the solution of the ligand in methanol under reflux with 1:1 metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, chloride content a
... Show More