Charge transfer complex formation method has been applied for the spectrophotometric determination of cimetidine, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3-Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (5.0 - 50.0) µg.mL-1 with detection limit of 0.268µg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of cimetidine in pharmaceutical preparations.
This approach was developed to achieve an accurate, fast, economic and sensitivity to estimation of diphenhydramine Hydrochloride. The dye that produced via reaction between diphenhydramine HCl with thymol blue in acidic medium pH ≈ 4.0. The ion pair method include an optimization study to formed yellowcolored that extraction by liquid – liquid method. The product separated of complexes by using by chloroform solution measured spectrophotometry at 400 nm. The analysis data at optimum conditions showed that linearity concentration in a range of calibration curve 1.0 – 50 μg /mL, limit of detectionand limit of quantification 0.0786 and 0.2358 μg/mL respectively. The molar absorptivity and Sandell’s sensitivity were 1.8 × 10 -4 L/mo
... Show MoreA simple, accurate, precise, rapid, economical and a high sensitive spectrophotometric method has been developed for the determination of tadalafil in pharmaceutical preparations and industrial wastewater samples, which shows a maximum absorbance at 204 nm in 1:1 ethanol-water. Beer's law was obeyed in the range of 1-7?g/ mL ,with molar absorptivity and Sandell ? s sensitivity of 0.783x105l/mol.cm and 4.97 ng/cm2respectively, relative standard deviation of the method was less than 1.7%, and accuracy (average recovery %) was 100 ± 0. 13. The limits of detection and quantitation are 0.18 and 0.54 µg .ml-1, respectively. The method was successfully applied to the determination of tadalafil in some pharmaceutical formulations
... Show MoreThe research work represent a fast and simple method for the determination of methionine using chemiluminescence for the methionine-sodium hydroxide-luminol for the generation of a chemiluminesecent derivative of luminal. The emission was measured by continuous flow analysis made sample size of 83µL was used.Response versus concentration extended from 0.2-20 mM.L-1 with a percentage linearity of 96.17% or with 99.17% percentage of linearity for the range 0.6-20 mM.L-1. Reaching to a L.O.D. at (S/N=3) for 5 µM.L-1 from the gradual dilution for the minimum concentration in the calibration graph with a repeatability of less than 0.5% (n=10). A comparison was made between the new developed method with the classical method for the spectrophoto
... Show MoreThis paper predicts the resilient modulus (Mr) for warm mix asphalt (WMA) mixtures prepared using aspha-min. Various predictor variables were analyzed, including asphalt cement types, asphalt contents, nominal maximum aggregate sizes (NMAS), filler content, test temperatures, and loading times. Univariate and multivariate analyses were conducted to examine the behavior of each predictor variable individually and collectively. Through univariate analysis, it was observed that Mr exhibited an inverse trend with asphalt cement grade, NMAS, test temperature, and load duration. Although Mr increased slightly with higher filler and asphalt content, the magnitude of this increase was minimal. Multivariate analysis revealed that the rate of change
... Show MoreA sensitive, accurate, and affordable colorimetric method was developed for assaying prednisolone (PRZ) in various medicinal forms. The procedure involves the oxidation of PRZ by ferric ions, followed by complexation of the resulting ferrous ions with ferricyanide to produce a greenish-blue product. Common complexation conditions were thoroughly investigated. The mole ratio of FeCl₃·6H₂O to K₃Fe(CN)₆ was 8:1. The proposed mechanism of complexation was suggested and considered. Various parameters were optimized, including the reduction of the colorimetric reaction temperature to 50°C and the duration of heating and analysis to 20-30 minutes. The calibration curve was linear over the range of 1-60 µg/mL. The limit of detection (LOD
... Show MoreThe study involved the removal of acidity from free fatty acid via the esterification reaction of oleic acid with ethanol. The reaction was done in a batch reactor using commercial 13X zeolite as a catalyst. The effects of temperatures (40 to 70 °C) and reaction time (up to 120 minutes) were studied using 6:1 mole ratio of pure ethanol to oleic acid and 5 wt. % of the catalyst. The results showed that acid removed increased with increasing temperature and reaction time. Also, the acidity removal rises sharply during the first reaction period and then changes slightly afterward. The highest acidity removal value was 67 % recorded at 110 minutes and 70 °C. An apparent homogeneous reversible reaction kinetic model has been proposed a
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreA new, Simple, sensitive and accurate spectrophotometric methods have been developed for the determination of sulfanilamide (SNA) drug in pure and in synthetic sample. This method based on the reaction of sulfanilamide (SNA) with 1,2-napthoquinone-4-sulphonic acid (NQS) to form N-alkylamono naphthoquinone by replacement of the sulphonate group of the naphthoquinone sulphonic acid by an amino group. The colored chromogen shows absorption maximum at 455 nm. The optimum conditions of condensation reaction forms were investigated by: (1) univariable method, by optimizing the effect of experimental variables; (different bases, reagent concentration, borax concentration and reaction time), (2) central composite design (CCD) including
... Show More