A new heterocyclic Schiff bases ligand (HL) derived from condensation of 2-Amino-4-methylbenzothiazole with 4-Diethylaminosalicylaldehyde have been synthesized and characterized by (FTIR & UV.Vis) spectroscopies, (1H & 13C)NMR spectra, mass spectrum, elemental microanalysis (C,H,N,S). Metal complexes with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions have been also synthesized and characterized by (FTIR & UV.Vis) spectroscopies, flame atomic absorption, molar conductivity measurements and magnetic susceptibility. These studies indicate that the mole ratio (L:M) is (2:1) for Co(II) complex and (1:1) for other complexes. The spectral results indicate that the ligand coordinates with metal ions as monobasic bidentate, via azomethine nitrogen and phenolic oxygen atoms. The study suggested octahedral geometry for Co(II), Ni(II) and Zn(II) complexes and square planar and tetrahedral geometries for Cu(II) and Cd(II) complexes, respectively. The enzyme activity of the ligand and its metal complexes with acetylcholine esterase1 (AChE) have also been studied. The study of enzyme activity indicates that the ligand and its metal complexes revealed different inhibition behaviors.
New nano composites containing Schiff bases have been synthesized and presented in this paper. All compounds have been categorized through FT-IR and some of them by H-NMR spectroscopy. The antibacterial performance of the prepared compounds has been investigated according to the agar diffusion method. The compounds (P1,P2,C1, and C2) have shown, in general, significant inhibition against bacterial.
Pathogenic microorganisms are becoming more and more resistant to antimicrobial agents. So the synthesis of new antimicrobial agents is very important. In this work, new 5-fluoroisatin-chalcone conjugates 5(a–g) were synthesized based on previous research that showed the modifications of the isatin moiety led to the synthesis of many derivatives that have antimicrobial activity. 4-aminoacetophenone reacts with 5-fluoroisatin to form Schiff base (3), which in turn reacts with two different groups of aromatic (carbocyclic and heterocyclic) aldehydes 4(a–g) separately to form the final compounds 5(a–g). Proton-nuclear magnetic resonance (¹H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy were used to confirm the chemic
... Show MoreA new set of metal complexes by the general formula [M(C)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-chlorophenyl)succinamide] (C) derived from succinyl chloride with 4-Chloroaniline with the transition metal ions Mn(II), Co(II), Ni(II), Hg(II), Cu(II) and Cd(II). Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (C)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (C) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group) and the octahedral composition of these complexes is suggested. The anti-bacterial action of the compounds towards three types of bacteria
... Show MoreThe organic compound imidazole has the chemical formula C3N2H4. Numerous significant biological compounds contain imidazole. The amino acid histidine is the most prevalent. The substituted imidazole derivatives have great potential for treating a variety of systemic fungi infections. Thiourea is an organosulfur compound with the formula SC(NH2)2. It is a reagent in organic synthesis. In this paper, some new imidazole and thiourea derivatives are synthesized, characterized, and studied for their biological activity. These new compounds were synthesized from the starting material terephthalic acid, which was transformed to corresponding ester [I] by the refluxing of diacid with methanol in the presence of H2SO4 as a catalyst, compound [I] con
... Show MoreTwo new organotin(IV) complexes Me2Snesc (C1) and Bu2Snesc (C2) have been synthesised from the reaction of the corresponding organotin(IV) chloride with the Schiff base ligand 3,4-dihydroxybenzaldehyde-4-ethylsemicarbazone (H2esc). The ligand was prepared in two steps. The first step includes the formation of 4-ethylsemicarbazide, which then reacted with 3,4-dihydroxybenzaldehyde to give the title ligand. Complex formation between the organotin(IV) moiety and the anionic form of 3,4-dihydroxybenzaldehy-4-ethylsemicarbazone occurred through the o-dihydroxy positions. The ligand and its complexes were characterised by elemental analysis, FT-IR and NMR (1H, 13C and 119Sn) spectroscopy. Accordingly, the complexes were proposed to have tetrahedr
... Show MoreThe coordination ability of the azo-Schiff base 2-[1,5-Dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethyl imino]-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylazo]-5- hydroxy-benzoic acid has been proven in complexation reactions with Co(II), Ni(II), Cu(II), Pd(II) and Pt(II) ions. The free ligand (LH) and its complexes were characterized using elemental analysis, determination of metal concentration, magnetic susceptibility, molar conductivity, FTIR, Uv-Vis, (1H, 13C) NMR spectra, mass spectra and thermal analysis (TGA). The results confirmed the coordination of the ligand through the nitrogen of the azomethine, Azo group (Azo) and the carboxylate ion with the metal ions. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are cal
... Show MoreA new series of morpholine derivative were prepared by reacting the morpholine with ethyl chloro acetate in the presence triethylamine as an catalyst and benzene as a solvent gave the ethyl morpholin-4-ylacetate reaction with hydrazine hydrate and ethanol as a solvent gave the 2-(morpholin-4-yl)acetohydrazide gave series of Schiff base were prepared by reacting 2-(morpholin-4- yl)acetohydrazide with different aromatic aldehydes and ketons . The new series of (3-9 )were synthesis by reaction of Schiff base (10-14) with chloroacetyl chloride, triethyl amine as an catalyst and 1,4dioxane as a solvent .The chemical structures of the synthesis compound were identified by spectral methods their [ IR ,1H-NMR and 13C-NMR ].The synthesised compoun
... Show More