Preferred Language
Articles
/
jih-1442
Algorithm to Solve Linear Volterra Fractional Integro-Differential Equation via Elzaki Transform
...Show More Authors

       In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Estimation Mean Wind Speed in Iraq By Using Parametric And Nonparametric Linear Mixed Models
...Show More Authors

In this research, the one of the most important model and widely used in many and applications is linear mixed model, which widely used to analysis the longitudinal data that characterized by the repeated measures form .where estimating linear mixed model by using two methods (parametric and nonparametric) and used to estimate the conditional mean and marginal mean in linear mixed model ,A comparison between number of models is made to get the best model that will represent the mean wind speed in Iraq.The application is concerned with 8 meteorological stations in Iraq that we selected randomly and   then we take a monthly data about wind speed over ten years Then average it over each month in corresponding year, so we g

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Image encryption based on combined between linear feedback shift registers and 3D chaotic maps
...Show More Authors

Protecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Sun Sep 06 2009
Journal Name
Baghdad Science Journal
Extension of the Chebyshev Method of Quassi-Linear Parabolic P.D.E.S With Mixed Boundary Conditions
...Show More Authors

The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aerosol And Air Quality Research
Effect of Inner Rod Tilting on the Performance of a Cylindrical Differential Electrical Mobility Analyzer (DEMC)
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
On a Subclass of Analytic and Univalent Functions with Positive Coefficients Defined by a Differential Operator
...Show More Authors

In this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:  

 

which is defined in the open unit disk  satisfying the following condition

This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Iraqi Journal Of Science
The Continuous Classical Boundary Optimal Control of Triple Nonlinear Elliptic Partial Differential Equations with State Constraints
...Show More Authors

    Our aim in this work is to study the classical continuous boundary control vector  problem for triple nonlinear partial differential equations of elliptic type involving a Neumann boundary control. At first, we prove that the triple nonlinear partial differential equations of elliptic type with a given classical continuous boundary control vector have a unique "state" solution vector,  by using the Minty-Browder Theorem. In addition, we prove the existence of a classical continuous boundary optimal control vector ruled by the triple nonlinear partial differential equations of elliptic type with equality and inequality constraints. We study the existence of the unique solution for the triple adjoint equations

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Iraqi Journal Of Science
The Classical Continuous Mixed Optimal Control of Couple Nonlinear Parabolic Partial Differential Equations with State Constraints
...Show More Authors

In this work, the classical continuous mixed optimal control vector (CCMOPCV) problem of couple nonlinear partial differential equations of parabolic (CNLPPDEs) type with state constraints (STCO) is studied. The existence and uniqueness theorem (EXUNTh) of the state vector solution (SVES) of the CNLPPDEs for a given CCMCV is demonstrated via the method of Galerkin (MGA). The EXUNTh of the CCMOPCV ruled with the CNLPPDEs is proved. The Frechet derivative (FÉDE) is obtained. Finally, both the necessary and the sufficient theorem conditions for optimality (NOPC and SOPC) of the CCMOPCV with state constraints (STCOs) are proved through using the Kuhn-Tucker-Lagrange (KUTULA) multipliers theorem (KUTULATH).

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Science
A Stochastic Differential Equations Model for the Spread of Coronavirus COVID-19): The Case of Iraq
...Show More Authors

In this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible  -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the  deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill

... Show More
View Publication Preview PDF
Scopus (15)
Crossref (5)
Scopus Crossref
Publication Date
Thu Feb 29 2024
Journal Name
Iraqi Journal Of Science
Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function
...Show More Authors

     In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
International Journal Of Nonlinear Analysis And Applications
A proposed method for cleaning data from outlier values using the robust rfch method in structural equation modeling
...Show More Authors

View Publication Preview PDF
Scopus (2)
Scopus