In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreNonlinear regression models are important tools for solving optimization problems. As traditional techniques would fail to reach satisfactory solutions for the parameter estimation problem. Hence, in this paper, the BAT algorithm to estimate the parameters of Nonlinear Regression models is used . The simulation study is considered to investigate the performance of the proposed algorithm with the maximum likelihood (MLE) and Least square (LS) methods. The results show that the Bat algorithm provides accurate estimation and it is satisfactory for the parameter estimation of the nonlinear regression models than MLE and LS methods depend on Mean Square error.
The purpose of this project is to build a scientific base and computational programs in an accelerator design work. The transfer of group of laws in alinear accelerator cavity to computer codes written in Fortran power station language is inorder to get a numerical calculation of an electromagnetic field generated in the cavities of the linear accelerator. The program in put contains mainly the following, the geometrical cavity constant, and the triangular finite element method high – order polynomial. The out put contains vertical and horizontal components of the electrical field together with the electrical and the magnetic field intensity.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show More