In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
This is a survey study that presents recent researches concerning factional controllers. It presents several types of fractional order controllers, which are extensions to their integer order counterparts. The fractional order PID controller has a dominant importance, so thirty-one paper are presented for this controller. The remaining types of controllers are presented according to the number of papers that handle them; they are fractional order sliding mode controller (nine papers), fuzzy fractional order sliding mode controller (five papers), fractional order lag-lead compensator (three papers), fractional order state feedback controller (three papers), fractional order fuzzy logic controller (three papers). Finally,
... Show MoreIn this paper we introduced a new type of integrals based on binary element sets “a generalized integral of Shilkret and Choquet integrals” that combined the two kinds of aggregation functions which are Shilkret and Choquet integrals. Then, we gave some properties of that integral. Finally, we illustrated our integral in a numerical example.
.
In this paper, the delay integral equations in population growth will be described,discussed , studied and transfered this model to integro-differential equation. At last,we will solve this problem by using variational approach.
In this paper, chaotic and periodic dynamics in a hybrid food chain system with Holling type IV and Lotka-Volterra responses are discussed. The system is observed to be dissipative. The global stability of the equilibrium points is analyzed using Routh-Hurwitz criterion and Lyapunov direct method. Chaos phenomena is characterized by attractors and bifurcation diagram. The effect of the controlling parameter of the model is investigated theoretically and numerically.
The aim of this paper is to study the effects of magnetohydrodynamic (MHD) on
flow of field of Oldroyd-B fluid between two side walls parallel to the plate .
The continuity and motion equations, for the problem under consideration are
obtained. It is found that the motion equation contains fraction derivative of
different order and the magnetohydrodynamic (MHD) parameter M .The effect of M
upon the velocity field is analyzed ,many types of fractional models are also
considered through taken different values of the fraction derivative order . This has
been done through plotting the velocity field by using Mathemitca package .
Close form for the stress tensor was obtained in many cases, which have been
studied be
The local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.
The aim of this paper is to introduce a certain family of new classes of multivalent functions associated with subordination. The various results obtained here for each of these classes include coefficient estimates radius of convexity, distortion and growth theorem.
The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
In this paper we have studied a generalization of a class of ( w-valent ) functions with two fixed points involving hypergeometric function with generalization integral operator . We obtain some results like, coefficient estimates and some theorems of this class.
Nowadays, the field of radionuclide treatment is enjoying an exciting stage and preparing for further growth and progress in the future. For instance, in Asia, the large spread of liver and thyroid diseases has resulted in several new developments/clinical trials using molecular radiotherapy (i.e. targeted radionuclide therapy). Iodine-124 has unique physical properties including long half-life that adding an advantage for pharmacokinetics and radiopharmaceutical analysis. One of its applications in nuclear medicine is in Positron Emission Tomography (PET).