In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class , is calculaed.
This research aims to solve the problem of selection using clustering algorithm, in this research optimal portfolio is formation using the single index model, and the real data are consisting from the stocks Iraqi Stock Exchange in the period 1/1/2007 to 31/12/2019. because the data series have missing values ,we used the two-stage missing value compensation method, the knowledge gap was inability the portfolio models to reduce The estimation error , inaccuracy of the cut-off rate and the Treynor ratio combine stocks into the portfolio that caused to decline in their performance, all these problems required employing clustering technic to data mining and regrouping it within clusters with similar characteristics to outperform the portfolio
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreIn general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreThe main object of this study is to solve a system of nonlinear ordinary differential equations (ODE) of the first order governing the epidemic model using numerical methods. The application under study is a mathematical epidemic model which is the influenza model at Australia in 1919. Runge-kutta methods of order 4 and of order 45 for solving this initial value problem(IVP) problem have been used. Finally, the results obtained have been discussed tabularly and graphically.
Simple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show MoreIn this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (