The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
The study of torsion {torsion free) fuzzy modules over fuzzy
integtal domain as a generalization oftorsion (torsion free) modules.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
The purpose of this paper is to define fuzzy subspaces for fuzzy space of orderings and we prove some results about this definition in which it leads to a lot of new results on fuzzy space of orderings. Also we define the sum and product over such spaces such that: If f = < a1,…,an > and g = < b1,…bm>, their sum and product are f + g = < a1…,an, b1, …, bm> and f × g =
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreIn this paper we recall the definition of fuzzy length space on a fuzzy set after that we recall basic definitions and properties of fuzzy length. We define fuzzy bounded operator as an introduction to defined fuzzy length of an operator then we proved that the fuzzy length space FB ̃ ̃ consisting of all fuzzy bounded linear operators from a fuzzy length space ̃ into a fuzzy length space ̃ is fuzzy complete if ̃ is fuzzy complete. Also we proved that every finite dimensional fuzzy length space is fuzzy complete.
The principal aim of this research is to use the definition of fuzzy normed space
to define fuzzy bounded operator as an introduction to define the fuzzy norm of a
fuzzy bounded linear operator then we proved that the fuzzy normed space FB(X,Y)
consisting of all fuzzy bounded linear operators from a fuzzy norm space X into a
fuzzy norm space Y is fuzzy complete if Y is fuzzy complete. Also we introduce
different types of fuzzy convergence of operators.
The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.
In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if is character on Z then ker is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is -fuzzy closed subset of fb(Z, ) when (Z, , , ) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.
In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show More