Preferred Language
Articles
/
jih-1285
Application of Kass' Snake in Medical Images Segmentation
...Show More Authors

A   snake   is   an   energy-minimizing   spline   guided   by   external

constraint forces and influenced by image forces that pull it toward features such as lines and edges. Snakes are active contour models: they lock onto nearby edges, localizing them accurately. Snakes provide a unified account of a number of visual problems, including detection of edges, lines, and motion tracking. We have used snakes successfully for segmentation, in  which  user-imposed  constraint forces guide the snake near features of interest (anatomical structures). Magnetic Resonance Image (MRI) data set and Ultrasound images are used for our experiments. Good results are obtained,  where  Kass' snake could successfully segment the anatomical structures from MRl and ultrasound images.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Journal Of Engineering
The Leaching Behavior of Zinc Oxide in Medical Waste of Dental Clinics
...Show More Authors

Zinc Oxide is an indispensable substance in the field of dental treatment. It is used daily and intensively in all governmental and private dental clinics, leading to the disposal of very high concentrations of zinc with waste and eventually in landfill sites as a final destination for solid waste removal. This indicates the urgent need to investigate its behavior upon disposal due to the surrounding conditions. Approximately 4195 g of mixed dental waste samples were collected from (17) healthcare centers in Baghdad Al-Karkh. The leaching behavior of ZnO powder was investigated through batch reactors using makeup dental solid waste samples. The ZnO leaching was tested with 3 conditions; acidic, alkaline, and Ionic Streng

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 01 2011
Journal Name
Iop Conference Series: Materials Science And Engineering
Contour extraction of echocardiographic images based on pre-processing
...Show More Authors

In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Use of Infrared Light to Improve Breast Sonographic images
...Show More Authors

It is well known that sonography is not the first choice in detecting early breast tumors. Improving the resolution of breast sonographic image is the goal of many workers to make sonography a first choice examination as it is safe and easy procedure as well as cost effective. In this study, infrared light exposure of breast prior to ultrasound examination was implemented to see its effect on resolution of sonographic image. Results showed that significant improvement was obtained in 60% of cases.

View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Clouds Height Classification Using Texture Analysis of Meteosat Images
...Show More Authors

In the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
دار الكتب والوثائق العراقيه
Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org
...Show More Authors

Introduction to Medical and Biological Statistics for Pharmacy Students and Medical Groups (Undergraduate & Postgraduate) - ISBNiraq.org

View Publication
Publication Date
Sun Jun 01 2025
Journal Name
University Of Kirkuk Journal For Administrative And Economic Science
Anova For Fuzzy Data With Practical in The Medical Field
...Show More Authors

This research study Blur groups (Fuzzy Sets) which is the perception of the most modern in the application in various practical and theoretical areas and in various fields of life, was addressed to the fuzzy random variable whose value is not real, but the numbers Millbh because it expresses the mysterious phenomena or uncertain with measurements are not assertive. Fuzzy data were presented for binocular test and analysis of variance method of random Fuzzy variables , where this method depends on a number of assumptions, which is a problem that prevents the use of this method in the case of non-realized.

View Publication Preview PDF
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
A Review Study on Forgery and Tamper Detection Techniques in Digital Images
...Show More Authors

Digital tampering identification, which detects picture modification, is a significant area of image analysis studies. This area has grown with time with exceptional precision employing machine learning and deep learning-based strategies during the last five years. Synthesis and reinforcement-based learning techniques must now evolve to keep with the research. However, before doing any experimentation, a scientist must first comprehend the current state of the art in that domain. Diverse paths, associated outcomes, and analysis lay the groundwork for successful experimentation and superior results. Before starting with experiments, universal image forensics approaches must be thoroughly researched. As a result, this review of variou

... Show More
View Publication
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (5)
Crossref