Modification of gas chromatographic technique for the separation and determination of methyl ethoy silane compounds which were synthesized by the addition of absolute ethanol to methyl chlorosilane compounds have been elaborated experimentally. The addition of absolute dry ethanol to methyl chlorosilane compounds in the presence of a dry stream of nitrogen gas led to sweep out the liberated HCl gas. This method was found to be the suitable method for the preparation of methyl ethoxy silane compounds. The optimum parameter selected after careful and precise studies was between 20 – 30 ml \ min to carrieir gas flow rate, while applied temperatures of detector and injection part were 250 °C and 225 °C respectively. The results showed that suitable chromatographic column for the separation of methyl chloro silane compounds is 50% [5% dioctyl phthalate ] + 50% [10% OV- 101 ] .While 10 % OV – 101 column was found to be the best for the separation of methyl ethoxysilane compounds . Accordingly , a linear relationship for the calibration curve between concentration and peak area is achieved for methyl chlorosilane and methyl ethoxysilane . Correlation coefficients here ranged between 1 – 0.9991. The results of percentage RSD alotarned for the methyl chlorosilane and methyl ethoxysilane were 0.512.08 and 0.053-1.37 respectively.
The fingerprinting DNA method which depends on the unique pattern in this study was employed to detect the hydatid cyst of Echinococcus granulosus and to determine the genetic variation among their strains in different intermediate hosts (cows and sheep). The unique pattern represents the number of amplified bands and their molecular weights with specialized sequences to one sample which different from the other samples. Five hydatitd cysts samples from cows and sheep were collected, genetic analysis for isolated DNA was done using PCR technique and Random Amplified Polymorphic DNA reaction(RAPD) depending on (4) random primers, and the results showed:
... Show MoreIn the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks
Samarium ions (Sm +3), a rare-earth element, have a significant optical emission within the visible spectrum. PMMA samples, mixed with different ratios of SmCl3.6H2O, were prepared via the casting method. The composite was tested using UV-visible, photoluminescence and thermogravimetric analysis (TGA). The FTIR spectrometry of PMMA samples showed some changes, including variation in band intensity, location, and width. Mixed with samarium decreases the intensity of the CO and CH2 stretching bands and band position. A new band appeared corresponding to ionic bonds between samarium cations with negative branches in the polymer. These variations indicate complex links between the Sm +3 ion and oxygen in the ether group. The optical absorption
... Show MoreAdvanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreTwo EM techniques, terrain conductivity and VLF-Radiohm resistivity (using two
different instruments of Geonics EM 34-3 and EMI6R respectively) have been applied to
evaluate their ability in delineation and measuring the depth of shallow subsurface cavities
near Haditha city.
Thirty one survey traverses were achieved to distinguish the subsurface cavities in the
investigated area. Both EM techniques are found to be successfiul tools in study area.
The fractional free volume (Fh) in polystyrene (PS) as a function of neutron -irradiation dose has been measured, using positron annihilation lifetime (PAL) method. The results show that Fh values decreased with increasing n-irradiation dose up to a total dose of 501.03× 10-2 Gy.
A percentage reduction of 2.14 in Fh values is noticed after the initial n-dose corresponding to a percentage reduction in the free volume equal to 42.14/Gy.
The total n-dose induces a percentage reduction of 7.26, corresponding to a percentage reduction of 1.45/Gy. These results indicate that cross -linking is the predominant process induced by n-irradiation.
The results suggest that n-irradiation induces structure changes in PS, causing cross-linking
Abstract
The aim of the present work is to control of metal buried corrosion by alteration the media method. This method depended on the characteristics of each media. The corrosion rates in different media (soil, sand, porcelanite stone and gravel) for specimens of low carbon steel were measured by two methods weight loss method and polarization method, weight loss measured by buried specimens in these medias separately for 90 days. The polarization method includes preparing of specimen and salt solutions have electrical resistivity equivalent electrical resistivity of these media. The corrosion rate of two method results in (soil > sand> porcelainte stone> gravel). The lower corrosion rate happene
... Show MoreIn this work, we construct projectively distinct (k,3)-arcs in the projective plane PG(2,9) by applying a geometrical method. The cubic curves have been been constructed by using the general equation of the cubic. We found that there are complete (13,3)-arcs, complete (15,3)-arcs and we found that the only (16,3)-arcs lead to maximum completeness
In this work, Co-Y-oxide Nano Structure is successfully synthesized via hydrothermal method. The XRD analysis, SEM analysis, optical, electrical and photo sensing properties have been investigated for Co3O4 and Co-Y-oxide thin films. The X-ray diffraction (XRD) analysis reveals that all films are polycrystalline in nature, having cubic structure. The SEM images of thin films clearly indicates that Co3O4 possesses nanosphere like structure and flower like for Co-Y-oxide. The optical properties show that the optical energy gap follows allowed direct electronic transition calculated using Tauc equation and it increases for Co-Y-oxide. The photo sensing properties of thin films are investigated as a function of time at different wavelengths to
... Show More