Modification of gas chromatographic technique for the separation and determination of methyl ethoy silane compounds which were synthesized by the addition of absolute ethanol to methyl chlorosilane compounds have been elaborated experimentally. The addition of absolute dry ethanol to methyl chlorosilane compounds in the presence of a dry stream of nitrogen gas led to sweep out the liberated HCl gas. This method was found to be the suitable method for the preparation of methyl ethoxy silane compounds. The optimum parameter selected after careful and precise studies was between 20 – 30 ml \ min to carrieir gas flow rate, while applied temperatures of detector and injection part were 250 °C and 225 °C respectively. The results showed that suitable chromatographic column for the separation of methyl chloro silane compounds is 50% [5% dioctyl phthalate ] + 50% [10% OV- 101 ] .While 10 % OV – 101 column was found to be the best for the separation of methyl ethoxysilane compounds . Accordingly , a linear relationship for the calibration curve between concentration and peak area is achieved for methyl chlorosilane and methyl ethoxysilane . Correlation coefficients here ranged between 1 – 0.9991. The results of percentage RSD alotarned for the methyl chlorosilane and methyl ethoxysilane were 0.512.08 and 0.053-1.37 respectively.
This work involves theoretical and experimental studies for seven compounds to calculate the electrons spectrum and NLO properties. The theoretical study is done by employing the Time Depending Density Functional Theory TD-DFT and B3LYP/high basis set 6-311++G (2d,2p), using Gaussian program 09. Experimental study by UV/VIS spectrophotometer device to prove the theoretical study. Theoretical and experimental results were applicable in spectrum and energy gap values, in addition to convergence theoretically the energy gap results from ΔEHOMO-LUMO and UV/VIS. spectrum. Consider the theoretical method very appropriate to compounds that absorb in vacuum UV.
Abstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
The removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show More
CD-nanosponges were prepared by crosslinking B-CD with diphenylcarbonate (DPC) using ultrasound assisted technique. 5-FU was incorporated with NS by freeze drying, and the phase solubility study, complexation efficiency (CE) entrapment efficiency were performed. Also, the particle morphology was studied using SEM and AFM. The in-vitro release of 5-FU from the prepared nanosponges was carried out in 0.1N HCl.
5-FU nanosponges particle size was in the nano size. The optimum formula showed a particle size of (405.46±30) nm, with a polydispersity index (PDI) (0.328±0.002) and a negative zeta potential (-18.75±1.8). Also the drug entrapment efficiency varied with the CD: DPC molar ratio from 15.6 % to 30%. The SEM an
... Show MoreBragg Reflectors consist of periodic dielectric layers having an optical path length of quarter wavelength for each layer giving them important properties and makes them suitable for optoelectronics applications. The reflectivity can be increased by increasing the number of layers of the mirror to get the required value. For example for an 8 layers Bragg mirror (two layers for each dielectric pair), the contrast of the refractive index has to be equal to 0.275 for reaching reflectivity > 99%. Doubling the number of layers results in a reflectivity of 99.99%. The high reflectivity is purely caused by multiple-interference effects. It can be analyzed by using different matrix methods such as the transfer matrix method (TMM) which is the
... Show MoreThe compound 3-[4Ì„-(4Ë-methoxy benzoyloxy) benzylideneamino]-2-thioxo-imidazolidine-4-one [III] was prepared from the cyclization of thiosemicarbazone [II] with
ethyl α -chloroacetate in the presence of fused sodium acetate. Treatment the later compound
with acetic anhydride yielded the corresponding 1-Acetyl-3-[ 4Ì„- (4Ë- methoxy benzoyloxy)
benzylideneamino] – 2 – thioxo -imidazolidine-4-one [IV]. 1,3-Oxazepine derivatives [V]a-d
and [VI]a-d are obtained from the reaction of compounds[III] and [IV] with different acid
anhydrides, in dry benzene. The FTIR and
1
HNMR spectroscopy are indicated a good
evidence for the formation of the synthesized compounds. Some of the synthesized