Preferred Language
Articles
/
jih-1244
Spectrophotometric Determination of Rantidine-HCl in Pharmaceutical Formulations
...Show More Authors

Spectrophotometric  methods  were  developed   for    the determination of rantidine-HCl in pharmaceutical tablets. These methods were based on the reaction of DDQ and p-chloranil with rantidine-HCl, resulting in the formation of an orange-red and purple colored products which are quantified spectrophotometrically at 460 and 540nm in DDQ and p-chloranil, respectively. A graph of absorbance versus concentration show that Beer’s law is obeyed in a concentration ranges of 20-160 and (30-120)g/ml with molar absorptivities of 2.631 x 103 and 1.052 x 103l .mol-1-cm-1 for DDQ and  p-chloranil, respectively. The optimum conditions for  color development  are described and  the  proposed  methods  were  applied   satisfactory  to pharmaceutical preparations.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 29 2012
Journal Name
Journal Of Karbala University
Optimization Quantitative Determination of Cimetidine in Pharmaceutical Preparations via Bromothymol Blue Using Central Composite Design
...Show More Authors

Preview PDF
Publication Date
Fri Jul 05 2024
Journal Name
Journal Of Applied Spectroscopy
Spectrophotometric Method Using the Derivative for the Determination of the Drug Losartan
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Thu Dec 28 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Determination of Sulfamethoxazole Based on Charge-Transfer Complexation with Sodium Nitroprusside
...Show More Authors

   A simple, accurate and precise spectrophotometric method has been developed for the analysis of sulfamethoxazole (SMZ) in pure form and pharmaceutical preparation. The method involves a direct charge transfer complexation of sulfamethoxazole (SMZ) with sodium nitroprusside (SNP) in alkaline medium and the presence of hydroxyl amine hydrochloride. Variables affecting the formation of the formed orange colored complex were optimized following two approaches univariate and central composite experimental design (CCD) multivariate. Under optimum recommended conditions, the formed complex exhibits λmax at 512 nm and the method conforms Beer's law for SMZ concentration in the range of 5.0-150.0 (µg.mL-1) with molar absorptivi

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Determination of Paracetamol by Diazotization and Coupling Reaction with Anthranilic Acid
...Show More Authors

This paper concerned with development of a spectrophotometric method for the determination of paracetamol, based on the diazotisation and coupling reaction with anthranilic acid in basic medium, to form an intense yellow coloured, water-soluble and stable azo-dye which shows a maximum absorption at 421nm. Beer’s law is obeyed over the concentration range of 1.0-10 µg/ml; with molar absorptivity of 2.1772×104 L.mol -1.cm-1 and Sandell’s sensitivity index 6.9446 µg.cm-2. The method has been applied successfully for the determination of paracetamol in pharmaceutical formulation. 

View Publication Preview PDF
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
The Spectrophotometric Determination of Famotidine Drug via Coupling with Diazotized Metochlopramide Hydrochloride
...Show More Authors

A new, simple and sensitive spectrophotometric method was described for the determination of famotidine (FAM) as a pure material and in pharmaceutical formulation. This method was based on diazotization and coupling reaction between famotidine and diazotized solution of metochlopramide hydrochloride (DMPH) in the presence of phosphate buffer solution to give a compound of azo dye having orange color soluble in water with high absorptivity at a wave length of 478 nm. The data shows that FAM and DMPH combine in the molar ratio of 1:1 at PH 7.0 .The method obeys Beer's law over concentration range of 1-40 ?g.ml-1 of famotidine with a correlation coefficient of 0.9955 and a detection limit of 0.10 ?g.ml-1. The apparent molar absorptivity re

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of The College Of Basic Education
Spectrophotometric determination of ciprofloxacin by Ion pair complex formation with bromothymol blue‏
...Show More Authors

Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Determination of Carbamazepine Via Oxidative Coupling Reaction with 2,4-dinitrophenyl hydrazine
...Show More Authors

An accurate and sensitive spectrophotometric method has been developed for the determination of carbamazepine (CRN.) in pure and dosage forms. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPHz) by potassium periodate than coupling with carbamazepine (CRN.) in alkaline medium to form a stable yellowish brown colored water-soluble dye with a maximum absorption at 485 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (4-50 μg.mL-1) with molar absorptivity of (6.7335×103 L.mol-1.cm1). The limit of detection was (0.1052 μg.mL-1) and Sandell’s sensitivity value was 0.0350 μg.cm-2.The proposed method

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 08 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Spectrophotometric Determination of Carbamazepine Via Oxidative Coupling Reaction with 2,4-dinitrophenyl hydrazine
...Show More Authors

 An accurate and sensitive spectrophotometric method has been developed for the determination of carbamazepine (CRN.) in pure and dosage forms. The method is based on the oxidation of 2,4-dinitrophenylhydrazine (2,4-DNPHz) by potassium periodate than coupling with carbamazepine (CRN.) in alkaline medium to form a stable yellowish brown colored water-soluble dye with a maximum absorption at 485 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of     (4-50 μg.mL-1) with molar absorptivity of (6.7335×103 L.mol-1.cm1). The limit of detection was (0.1052 μg.mL-1) and Sandell’s sensitivity value was 0.0350 μg.cm-2.

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
Spectrophotometric Determination of Chlorpromazine Hydrochloride Using 4-Nitroanilline by Oxidative Coupling Reaction
...Show More Authors

A simple, rapid spectrophotometric method has been established for the determination of chlorpromazine hydrochloride (CPZ) in its pure form and in a tablet formulations. The  suggested  method  is  based  on  the  oxidative coupling  reaction  with4-nitroainlline using KIO3 in acidic solution to produce a violet colored product with maximum absorption at λ=526 nm.The  analytical data  obtained  throughout  this  study  could  be  summarid  as  follows:  1ml of 1M HCl (pH=2.2), 1 ml  of  4-nitroanilline (1x10-2M), and 1.5ml  of (1x10-2)KIO3 per 25 ml reaction medium. The order of a

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Baghdad Science Journal
Spectrophotometric Determination of Bismuth(III) with Arsenazo(III) Reagent in Water samples and Veterinary Preparation
...Show More Authors

A simple , sensitive and accurate spectrophotometric method for the trace determination of bismuth (III) has been developed .This method is based on the reaction of bismuth (III) with arsenazo(III) in acid solution (pH=1.9) to form a blue water soluble complex which exhibits maximum absorption at 612nm .Beer's law is obeyed over the concentration range of 2-85 ?g bismuth (III) in a final volume of 20 mL( i.e. 0.1 – 4.25?g.mL-1) with a correlation coefficient of (0.9981) and molar absorptivity 1.9×104 L.mol-1.cm-1 . The limit of detection (LOD) and the limit of quantification (LOQ) are 0.0633 and 0.0847 ?g.mL-1 , respectively . Under optimum conditions,the stoichiometry of the reaction between bismuth (III) and arsenazo(III) r

... Show More
View Publication Preview PDF
Crossref