Let R be a commutative ring with identity. A proper ideal I of R is called semimaximal if I is a finite intersection of maximal ideals of R. In this paper we fuzzify this concept to fuzzy ideals of R, where a fuzzy ideal A of R is called semimaximal if A is a finite intersection of fuzzy maximal ideals. Various basic properties are given. Moreover some examples are given to illustrate this concept.
Values and ideals are two basic pillars in human life, and high societies have been keen throughout their ages to adhere to and establish them so that man can distinguish good and evil, right and wrong, as they are a balance of actions that give man a higher value. Many of the followers of Abbasid literature, poetry and prose – it is noted that many imams and writers have been keen to highlight these values and make them material for their poetry and literature, courage, generosity, chastity and....All meanings of human values and there is no doubt that one of the texts abounding in this field is what was reported from the people of the house of infallibility pure (peace be upon them), including we touch it in the visit of Imam Jaafar al-
... Show MoreThe aim of this work is to a connection between two concepts which are an interval value fuzzy set and a hyper AT-algebra. Also, some properties of these concepts are found. The notions of IVF hyper AT-subalgebras, IVF hyper ideals and IVF hyper AT-ideals are defined. Then IVF (weak, strong) hyper ideals and IVF (weak, strong) hyper AT-ideals are discussed. After that, some relations among these ideals are presented and some interesting theorems are proved.
In this paper, we introduce the concept of almost Quasi-Frobcnius fuzzy ring as a " " of Quasi-Frobenius ring. We give some properties about this concept with qoutient fuzzy ring. Also, we study the fuzzy external direct sum of fuzzy rings.
In this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
In this paper we introduce the idea of the commutator of two fuzzy subsets of a group and study the concept of the commutator of two fuzzy subsets of a group .We introduce and study some of its properties .
In this paper, we study a new concept of fuzzy sub-module, called fuzzy socle semi-prime sub-module that is a generalization the concept of semi-prime fuzzy sub-module and fuzzy of approximately semi-prime sub-module in the ordinary sense. This leads us to introduce level property which studies the relation between the ordinary and fuzzy sense of approximately semi-prime sub-module. Also, some of its characteristics and notions such as the intersection, image and external direct sum of fuzzy socle semi-prime sub-modules are introduced. Furthermore, the relation between the fuzzy socle semi-prime sub-module and other types of fuzzy sub-module presented.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.