In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
In engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreReducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi
The two dimensional steady, combined forced and natural convection in vertical channel is
investigated for laminar regime. To simulate the Trombe wall channel geometry properly, horizontal
inlet and exit segments have been added to the vertical channel. The vertical walls of the channel are
maintained at constant but different temperature while horizontal walls are insulated. A finite
difference method using up-wind differencing for the nonlinear convective terms, and central
differencing for the second order derivatives, is employed to solve the governing differential
equations for the mass, momentum, and energy balances. The solution is obtained for stream
function, vorticity and temperature as dependent variables
The human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simu
NiTi (also called Nitinol) transforms from cubic (austenite) to monoclinic (martensite), and vice versa, owing to the shape memory effect and superelasticity. Nitinol has a large number of biomedical applications because of its low elastic modulus close to that of natural bone material and good resistance to corrosion and fatigue, in addition to the transformation temperatures of nitinol that are close to body temperature. It has many other important applications, such as in the aircraft industry. In all these important applications, especially medical applications, Nitinol stability is an important factor for safety. Our goal is to study the stability of NiTi by calculating the phonon dispersion relation to obtain an accurate u
... Show MoreThe aim of this paper is to obtain a set of traveling wave solutions for klein –Gorden equation with kerr law non-linearity. More precisely, we apply a new path of popularized homogeneous balance (HB) method in terms of using linear auxiliary equations to find the results of non-linear klein-Gorden equation, which is a fundamental approach to determine competent solutions. The solutions are achieved as the integration of exponential, hyperbolic, trigonometric and rational functions. Besides, some of the solutions are demonstrated by the3D graphics.
Adsorption is a simplified new way, easy application , economical and environmentally friendly. In which the use of certain types of plants to remove or reduce toxic heavy metals from water. The current study involved the use of a non-living biomass as a powder for local plant available in the Iraqi environment is Phragmites australis .This the study showed the high ability of this plant to remove cadmium and lead ions from the aqueous solutions within variable experimental factors by column bed method which were used to test different sizes of plant powder were (500.1000, 1500 and 2000) μm . These sizes treated with initial concentration of Cd(II), Pb(II) was 25ppm , separately To test the optimum size for maximum adsorption and was 10
... Show More