The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
This research aims to use chemical reaction to determine some of beta lactam antibiotics which include cephalexin and ceftriaxone in some pharmaceuticals by formation Prussian Blue complexes and using them for the UV-Vis., determination of drugs at wavelengths range (700- 720)nm by reaction them with FeCl3 in the presence of reagent K3[Fe(CN)6] in acid media . The optimal experimental conditions for the complex formation have been studied such as volume of HCl , K3[Fe(CN)6] , FeCl3 ,temperature and reaction time .Analytical figures of merits obtained on applying the developed procedure for cephalexin and ceftriaxone resp. are Linearity,(2-10),(1-7)?g.ml-1 LOD(0.0601,0.0330) ?g.ml-1. The de
... Show MoreThe study was conducted at research station A, department of field crops, college of agricultural engineering sciences, university of Baghdad during summer 2021 to evaluate the effect of boron and some growth regulators on some growth criteria and yield of soybean crop (cv. shimaa). The experiment was carried out according to split plots by using randomized complete block design with three replications. The main plots included three concentrations of boron (75, 150 and 225) mg.L-1, the sub-plots included three levels of growth regulators, spraying kinetin (100 mg. L-1), spraying ethrel (200 mg.L-1) and spraying kinetin (100 mg.L-1) + spraying ethrel (200 mg.L-1) as
... Show MoreIn this work, we introduce a new kind of perfect mappings, namely j-perfect mappings and j-ω-perfect mappings. Furthermore we devoted to study the relationship between j-perfect mappings and j-ω-perfect mappings. Finally, certain theorems and characterization concerning these concepts are studied; j = , δ, α, pre, b, β
The purpose of this paper is to show that for a holomorphic and univalent function in class S, an omitted –value transformation yields a class of starlike functions as a rotation transformation of the Koebe function, allowing both the image and rotation of the function
to be connected. Furthermore, these functions have several properties that are not far from a convexity properties. We also show that Pre- Schwarzian derivative is not invariant since the convexity property of the function is so weak.
Through this study, the following has been proven, if is an algebraically paranormal operator acting on separable Hilbert space, then satisfies the ( ) property and is also satisfies the ( ) property for all . These results are also achieved for ( ) property.
In addition, we prove that for a polaroid operator with finite ascent then after the property ( ) holds for for all .
In this paper we introduce and study the concepts of semisimple gamma modules , regular gamma modules and fully idempotent gamma modules as a generalization of semisimple ring. An module is called fully idempotent (semisimple , regular) if for all submodule of (every submodule is a direct summand, for each , there exists and such that . We study some properties and relationships between them.
The family Ormyridae has been very much neglected by workers and only two species has been recorded so far from Iraq. The present study, based mainly on my collection, deals with five species, of which one is new to science. The new species is described together with notes on locality data, host records, distribution and taxonomical remarks for all the species.
Reacts compound C6H5PO2Cl2 with Secretary secondary R2NH at room temperature by Mulet 2:1 and using chloroform as a solvent in dry conditions to form composite 2HCl and the interaction of compound solution of sodium hydroxide and potassium by Mulet 3:1 salt was prepared
Let be a connected graph with vertices set and edges set . The ordinary distance between any two vertices of is a mapping from into a nonnegative integer number such that is the length of a shortest path. The maximum distance between two subsets and of is the maximum distance between any two vertices and such that belong to and belong to . In this paper, we take a special case of maximum distance when consists of one vertex and consists of vertices, . This distance is defined by: where is the order of a graph .
In this paper, we defined – polynomials based on
... Show More