Preferred Language
Articles
/
jih-1160
Approximation Solutions for System of Linear Fredhom Integral Equations by Using Decomposition Method
...Show More Authors

In this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun May 17 2020
Journal Name
Iraqi Journal Of Science
Solving Fuzzy Differential Equations by Using Power Series
...Show More Authors

In this paper, the series solution is applied to solve third order fuzzy differential equations with a fuzzy initial value. The proposed method applies Taylor expansion in solving the system and the approximate solution of the problem which is calculated in the form of a rapid convergent series; some definitions and theorems are reviewed as a basis in solving fuzzy differential equations. An example is applied to illustrate the proposed technical accuracy. Also, a comparison between the obtained results is made, in addition to the application of the crisp solution, when the-level equals one.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
An Algorithm for nth Order Intgro-Differential Equations by Using Hermite Wavelets Functions
...Show More Authors

In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given

View Publication Preview PDF
Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Boundary Optimal Control Vector Governing by Triple Linear Partial Differential Equations of Parabolic Type
...Show More Authors

In this paper, the continuous classical boundary optimal control problem (CCBOCP) for triple linear partial differential equations of parabolic type (TLPDEPAR) with initial and boundary conditions (ICs & BCs) is studied. The Galerkin method (GM) is used to prove the existence and uniqueness theorem of the state vector solution (SVS) for given continuous classical boundary control vector (CCBCV). The proof of the existence theorem of a continuous classical boundary optimal control vector (CCBOCV) associated with the TLPDEPAR is proved. The derivation of the Fréchet derivative (FrD) for the cost function (CoF) is obtained. At the end, the theorem of the necessary conditions for optimality (NCsThOP) of this problem is stated and prov

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 12 2025
Journal Name
Journal Of Engineering
Aerodynamic Characteristics of a Rectangular Wing Using Non-Linear Vortex Ring Method
...Show More Authors

The aerodynamic characteristics of general three-dimensional rectangular wings are considered using non-linear interaction between two-dimensional viscous-inviscid panel method and vortex ring method. The potential flow of a two-dimensional airfoil by the pioneering Hess & Smith method was used with viscous laminar, transition and turbulent boundary layer to solve flow about complex configuration of airfoils including stalling effect. Viterna method was used to extend the aerodynamic characteristics of the specified airfoil to high angles of attacks. A modified vortex ring method was used to find the circulation values along span wise direction of the wing and then interacted with sectional circulation obtained by Kutta-Joukowsky theorem of

... Show More
View Publication
Publication Date
Mon Oct 28 2019
Journal Name
Iraqi Journal Of Science
Laplace Adomian and Laplace Modified Adomian Decomposition Methods for Solving Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type
...Show More Authors

In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Sat Oct 30 2021
Journal Name
Iraqi Journal Of Science
Oscillation Criteria of Solutions of Third Order Neutral Integro-Differential Equations
...Show More Authors

      Some necessary and sufficient conditions are obtained that guarantee the oscillation of all solutions of two types of neutral integro-differential equations of third order. The integral is used in the sense of Riemann-Stieltjes. Some examples were included to illustrate the obtained results

View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Baghdad Science Journal
Traveling Wave Solutions of Fractional Differential Equations Arising in Warm Plasma
...Show More Authors

This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sat Sep 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Direct Estimation for Approximation by Bernstein Polynomial by Using Ditzian-Totik and Average in L Ja,h11 p < oo Modulus of Smoothness
...Show More Authors

The  purpose  of  the  paper  is  to  tind  the  degree  of  the approximation of a functions  f be bounded , measurable and defined

in  interval   [a,h]by  Bernstein  polynomial  in  LP    space  1 $ p < oo by

 

using Ditzian-Totik modulus  of smootlmess  and  k 1n  average modvlus of smoothness.

View Publication Preview PDF
Publication Date
Mon Mar 09 2015
Journal Name
Monthly Notices Of The Royal Astronomical Society
A reliable iterative method for solving Volterra integro-differential equations and some applications for the Lane–Emden equations of the first kind
...Show More Authors

View Publication
Crossref (7)
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Science And Research (ijsr)
The Linear Delay Fourth Order Eigen-Value Problems Solved By the Collocation Method
...Show More Authors