The purpose of this project is to build a scientific base and computational programs in an accelerator design work. The transfer of group of laws in alinear accelerator cavity to computer codes written in Fortran power station language is inorder to get a numerical calculation of an electromagnetic field generated in the cavities of the linear accelerator. The program in put contains mainly the following, the geometrical cavity constant, and the triangular finite element method high – order polynomial. The out put contains vertical and horizontal components of the electrical field together with the electrical and the magnetic field intensity.
Dens itiad ns vcovadoay fnre Dec2isco0D,ia asrn2trcds4 fenve ns 6ocfo ts ida%n2notd, rasr sedno6t(a asrn2trcd fnre sc2a 2cynwnvtrnco co nrs wcd2 /nt sedno6t(a fan(er wtvrcd ﯿ)ﺔ mh Dens r,ia cw asrn2trcds et/a laao vcosnyaday wcd asrn2trno( rea itdt2arads ﻘ cw sn2i%a %noatd da(dassnco 2cya%4 feao t idncd asrn2tra cw rea itdt2arad /t%ua )ﻘm ns t/tn%tl%a4 st, ﻘxh Dens ﻘx ets laao dawadday no srtrnsrnvt% %nradtrudas ts (uass icnor tlcur rea itdt2arad ﻘh Dea aMidassncos wcd Snts4 Oato -9utday 8ddcd )O-8m toy .a%trn/a 8wwnvnaov, cw rea idcicsay asrn2trcds tda clrtnoayh 1u2adnvt% dasu%rs tda idc/nyay feao rea
... Show MoreDue to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
The goal of this work is demonstrating, through the gradient observation of a of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of ( -system) was developed based on finite time ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypo
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Many of the elementary transformations of determinants which are used in their evaluation and in the solution of linear equations may by expressed in the notation of matrices. In this paper, some new interesting formulas of special matrices are introduced and proved that the determinants of these special matrices have the values zero. All formulation has been coded in MATLAB 7.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The aim of this paper is to estimate a nonlinear regression function of the Export of the crude oil Saudi (in Million Barrels) as a function of the number of discovered fields.
Through studying the behavior of the data we show that its behavior was not followed a linear pattern or can put it in a known form so far there was no possibility to see a general trend resulting from such exports.
We use different nonlinear estimators to estimate a regression function, Local linear estimator, Semi-parametric as well as an artificial neural network estimator (ANN).
The results proved that the (ANN) estimator is the best nonlinear estimator am
... Show MoreIn this paper, we used maximum likelihood method and the Bayesian method to estimate the shape parameter (θ), and reliability function (R(t)) of the Kumaraswamy distribution with two parameters l , θ (under assuming the exponential distribution, Chi-squared distribution and Erlang-2 type distribution as prior distributions), in addition to that we used method of moments for estimating the parameters of the prior distributions. Bayes