Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero ideal I of R is called semiessential if I  P  (0) for all non zero prime ideals of R, [4]. A ring R is called uniform if every ideal of R is essential. Nada in [6] introduced and studied the notion semiuniform ring where a ring R is called semiuniform ring if every ideal of R is semiessential ideal. In this paper we fuzzify the concepts semiessential ideal of a ring, uniform ring and semiuniform ring into semiessential fuzzy ideal of fuzzy ring, uniform fuzzy ring and semiuniform fuzzy ring. Where a fuzzy ideal A of a fuzzy ring X is semiessential if I  P  (0) for any prime fuzzy ideal P of X. A fuzzy ring X is called uniform (semiuniform) if every fuzzy ideal of X is essential (semiessential) respectively. In S.1, some basic definitions and results are collected. In S.2, we study semiesential fuzzy ideals of fuzzy ring, we give some basic properties about this concept. In S.3, we study the notion of uniform fuzzy rings and semiuniform fuzzy rings. Several properties about them are given. Throughout this paper, R is commutative ring with unity, and X(0) = 1, for any fuzzy ring.
In this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.
Applications of quantitative methods, which had been explicit attention during previous period (the last two centuries) is the method of application sales man or traveling salesman method. According to this interest by the actual need for a lot of the production sectors and companies that distribute their products, whether locally made or the imported for customers or other industry sectors where most of the productive sectors and companies distributed always aspired to (increase profits, imports, the production quantity, quantity of exports. etc. ...) this is the part of the other hand, want to behave during the process of distribution routes that achieve the best or the least or most appropriate.
... Show MoreIn this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
Let R be a Г-ring, and σ, τ be two automorphisms of R. An additive mapping d from a Γ-ring R into itself is called a (σ,τ)-derivation on R if d(aαb) = d(a)α σ(b) + τ(a)αd(b), holds for all a,b ∈R and α∈Γ. d is called strong commutativity preserving (SCP) on R if [d(a), d(b)]α = [a,b]α(σ,τ) holds for all a,b∈R and α∈Γ. In this paper, we investigate the commutativity of R by the strong commutativity preserving (σ,τ)-derivation d satisfied some properties, when R is prime and semi prime Г-ring.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved. 2010 AMS Classification: 06F35, 03G25, 08A72.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved.
Twelve compounds containing a sulphur- or oxygen-based heterocyclic core, 1,3- oxazole or 1,3-thiazole ring with hydroxy, methoxy and methyl terminal substituent, were synthesized and characterized. The molecular structures of these compounds were performed by elemental analysis and different spectroscopic tequniques. The liquid crystalline behaviors were studied by using hot-stage optical polarizing microscopy and differential scanning calorimetry. All compounds of 1,4- disubstituted benzene core with oxazole ring display liquid crystalline smectic A (SmA) mesophase. The compounds of 1,3- and 1,4-disubstituted benzene core with thiazole ring exhibit exclusively enantiotropic nematic liquid crystal phases.