Polymers (Silicon elastomer) are used lately as a conductive material in electronic application in addition to be transparent, to light. In this paper we prepared polymer films about (1mm) thick and less which contain Ni-metal powder cured in magnetic vacuum furnaces at temperature 120°C in order to arrange or to be oriented the particles of the Ni- powder through the polymer in such a way to be conductive for electric currents. We found that these films are sensitive to any loads on the surface (force per unit area). Using light loads on a unit electric cell from these films, we get an electric transparent sensor that could be used in sensing applications.
CdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
Nano-structural of vanadium pentoxide (V2O5) thin films were
deposited by chemical spray pyrolysis technique (CSPT). Nd and Ce
doped vanadium oxide films were prepared, adding Neodymium
chloride (NdCl3) and ceric sulfate (Ce(SO4)2) of 3% in separate
solution. These precursor solutions were used to deposit un-doped
V2O5 and doped with Nd and Ce films on the p-type Si (111) and
glass substrate at 250°C. The structural, optical and electrical
properties were investigated. The X-ray diffraction study revealed a
polycrystalline nature of the orthorhombic structure with the
preferred orientation of (010) with nano-grains. Atomic force
microscopy (AFM) was used to characterize the morphology of the
films. Un-do
Electrical Discharge Machining (EDM) is a non-traditional cutting technique for metals removing which is relied upon the basic fact that negligible tool force is produced during the machining process. Also, electrical discharge machining is used in manufacturing very hard materials that are electrically conductive. Regarding the electrical discharge machining procedure, the most significant factor of the cutting parameter is the surface roughness (Ra). Conventional try and error method is time consuming as well as high cost. The purpose of the present research is to develop a mathematical model using response graph modeling (RGM). The impact of various parameters such as (current, pulsation on time and pulsation off time) are studied on
... Show MoreSome of structural ,and electrical properties of pure and zinc (Zn) doped cadmium telluride thin films with impurity percentages (0.5, 1, 1.5)%, deposited on hot glass substrate (temperature equals to 423K) of thickness of 300nm and rate deposition of 0.5 nm.s-1 by thermal co-evaporation technique under vacuum of (2×10-5)Torr have been investigates. The structural properties for the prepared films were studied before and after. doping process by analysis of the X-ray diffraction, and it appeared that pure and dopant CdTe thin films are polycrystalline and have the cubic structure with preferential orientation in the [111] direction, and the crystal structure of the films were improved due to doping process. From d.c
... Show MoreAutonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi
... Show MoreIn this paper, CdO nanoparticles prepared by pulsed laser deposition techniqueonto a porous silicon (PS) surface prepared by electrochemical etching of p-type silicon wafer with resistivity (1.5-4Ω.cm) in hydrofluoric (HF) acid of 20% concentration. Current density (15 mA/cm2) and etching times (20min). The films were characterized by the measurement of AFM, FTIR spectroscopy and electrical properties.
Atomic Force microscopy confirms the nanometric size.Chemical components during the electrochemical etching show on surface of PSchanges take place in the spectrum of CdO deposited PS when compared to as-anodized PS.
The electrical properties of prepared PS; namely current density-voltage charact
... Show MoreMetal oxide nanoparticles, including iron oxide, are highly considered as one of the most important species of nanomaterials in a varied range of applications due to their optical, magnetic, and electrical properties. Iron oxides are common compounds, extensive in nature, and easily synthesized in the laboratory. In this paper, iron oxide nanoparticles were prepared by co-precipitation of (Fe+2) and (Fe+3) ions, using iron (II and III) sulfate as precursor material and NH4OH solution as solvent at 90°C. After the synthesis of iron oxide particles, it was characterized using X-ray diffraction (XRD), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). These tests confirmed the obtaining o
... Show MorePreviously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show MoreResearch aims to develop a novel technique for segmental beam fabrication using plain concrete blocks and externally bonded Carbon Fiber Reinforced Polymers Laminates (CFRP) as a main flexural reinforcement. Six beams designed an experimentally tested under two-point loadings. Several parameters included in the fabrication of segmental beam studied such as; bonding length of carbon fiber reinforced polymers, the surface-to-surface condition of concrete segments, interface condition of the bonding surface, and thickness of epoxy resin layers. Test results of the segmental beams specimens compared with that gained from testing reinforced concrete beam have similar dimensions for validations. The results show the effectiven
... Show MoreA good performance of reinforced concrete structures is ensured by the bond between steel and concrete, which makes the materials work together, forming a part of solidarity. The behavior of the bond between the reinforcing bar and the surrounding concrete is significant to evaluate the cracking control in serviceability limit state and load capacity in the ultimate limit state. In this investigation, the bond stresses between reinforcing bar and reactive powder concrete (RPC) was considered to compare it with that of normal strength concrete (NSC). The push-out test with short embedment length is considered in this study to evaluate the bond strength, bond stress-slip relationship, and bond stress-crack width relationsh
... Show More