Polymers (Silicon elastomer) are used lately as a conductive material in electronic application in addition to be transparent, to light. In this paper we prepared polymer films about (1mm) thick and less which contain Ni-metal powder cured in magnetic vacuum furnaces at temperature 120°C in order to arrange or to be oriented the particles of the Ni- powder through the polymer in such a way to be conductive for electric currents. We found that these films are sensitive to any loads on the surface (force per unit area). Using light loads on a unit electric cell from these films, we get an electric transparent sensor that could be used in sensing applications.
Binuclear copper, nickel, cobalt, manganese and mercury complexes of the Schiff base H2L (C40H28N2O4) obtained by condensation of 2-benzoyl benzoic acid with benzidine. The Schiff base and their complexes have been subjected to[ FT-IR, elemental analysis ,UV-Vis, 1H and 13C NMR ] spectral studies, molar conductivity, magnetic moment and HPLC measurements. All the complexes showed tetrahedral geometries with the general structure [M2(L)2]. Generality of the synthesized components offer antibacterial efficiency to (Staphylococcu saureus), (Escherichia coli),(Bacillus subtilis) and(Pseudomonas aeruginosa).
In this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.
A new Macrocyclic Schiff base ligand Bis[4-hydroxy(1,2-ethylene-dioxidebenzylidene) pheylenediamine] [H2L] and its complexes with (Co(II) , Ni(II) , Cu(II) , Zn(II) and Cd(II)) are reported . The ligand was prepared in two steps,in the first step a solution of (o-phenylene diamine) in methanol react under reflux with (2,4-dihydroxybenzylaldeyed) to give an (intermediatecompound) [Bis-1,2 (2,4-dihydroxybenzylediene)pheylinediamine] which react in the second step with (1,2- dichloro ethane) giving the mentioned ligand.Then the complexes were synthesis of adding of corresponding metal salts to the solution of the ligand in methanol under reflux with 1:1 metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, chloride content a
... Show MoreNH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi
... Show MoreFour electrodes were synthesized based on molecularly imprinted polymers (MIPs). Two MIPs were prepared by using the diclofenac sodium (DFS) as the template, 2-hydroxy ethyl metha acrylate(2-HEMA) and 2-vinyl pyridine(2-VP) as monomers as well as divinyl benzene and benzoyl peroxide as cross linker and initiator respectively. The same composition used for prepared non-imprinted polymers (NIPs) but without the template (diclofenac sodium). To prepared the membranes electrodes used different plasticizers in PVC matrix such as: tris(2-ethyl hexyl) phosphate (TEHP), tri butyl phosphate (TBP), bis(2-ethyl hexyl) adipate (BEHA) and tritolyl phosphate (TTP). The characteristics studied the slop, detection limit, life time and linearity range of DF
... Show MoreThis work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied
... Show MoreBackground:In this study,TiO2 layer was thermally grown as a diffusion barrier on CP Ti substrate prior to electrophoretic deposition of HA coatings, to improve the coating’s compatibility also macro and micro pores in nano Hydroxyapatite dual coatings were created and their effect on the bond strength between the bone and implant was evaluated. Materials and methods: Electrophoretic Deposition technique (EPD) was used to obtain coatings for each one of four types of Hydroxyapatite(HA)on CP Ti screws (micro HA, nano HA, dual nano HA with micro pores, dual nano HA with macro pores) where carbon particles used as fugitive material to be removed by thermal treatment to create porosity.For examination of the changes occurred on the subs
... Show MoreIn this research Epoxy resin was reinforced by nano alumina (AL2O3) particles in grain size(25-30 nm) with two weight ratios (2,4)% then compared with pure Epoxy. Four mechanical tests were performed on these materials include Hardness, flexural, impact & compression strengths before and after immersion in tap water and chemical solutions (CH3COOH) acid, (KOH) base at (0.5N) ,The diffusivity coefficients of all prepared samples were calculate after immersion in water and chemical solutions mentioned above , the results were showed that the Flexural, Impact & Hardness increase after addition the ceramic particles (AL2O3) while the immersion process results showed illustrated different values from sample to other.
Microwave heating is caused by the ability of the materials to absorb microwave energy and convert it to heat. The aim of this study is to know the difference that will occur when heat treating the high strength aluminum alloys AA7075-T73 in a microwave furnace within different mediums (dry and acidic solution) at different times (30 and 60) minutes, on mechanical properties and fatigue life. The experimental results of microwave furnace heat energy showed that there were variations in the mechanical properties (ultimate stress, yielding stress, fatigue strength, fatigue life and hardness) with the variation in mediums and duration times when compared with samples without treatment. The ultimate stress, yielding stress and fatigue streng
... Show More