Two simple and sensitive spectrophotometric methods are proposed for the determination of amitriptyline in its pure form and in tablets. The first method is based on the formation of charge- transfer complex between amitriptyline as n-donor and tetracyano-ethylene (TCNE) as πacceptor. The product exhibit absorbance maximum at 470 nm in acetonitrile solvent (pH =9.0 ) . In the second method the absorbance of the ion- pair complex, which is formed between the soughted drug and bromocresol green (BCG), was measured at 415 nm at ( pH=3.5) . In addition to classical univariate optimization, modified simplex method (MSM) was applied in the optimization of the variable affecting the color producing reaction by a geometric simplex in three dimensions of space. Beers, law was obeyed in the concentration ranges 6.0-70 and 8.0-100 µg.ml-1 with molar absorbitivites of 2275 and 1475 l. mol-1 cm-1 for TCNE and BCG methods respectively. The limits of detection of the two methods are 0.043 and 0.034 µg.ml-1 and their Sandells sensitivity values are 0.122 and 0.188 µg.ml-1 respectively.
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreThe present study describes employing zero-, 1st - and 2nd -order derivative spectrophotometric methods have been developed for determination of lorazepam (LORA) and clonazepam (CLON) in commercially available tablets. LORA was determined by means of 1st (D1), 2nd (D2) derivative spectrophotometric techniques using zero cross, peak height, and Peak area. D1 used for the determination of CLON by using zero cross and peak height while D2 (zero cross) was used for the determination of CLON. The method was established to be linear in concentration containing different ratios of LORA and CLON range of (20-200 mg/L) and (5-35 mg/L) at wavelength range (250 -370 nm), (210-370nm) respectively. The proposed techniques are highly sensitive, precise a
... Show MoreA new simple and sensitive spectrophotometric method is described for quantification of Nifedipine (NIF) and their pharmaceutical formulation. The selective method was performed by the reduction of NIF nitro group to yield primary amino group using zinc powder with hydrochloric acid. The produced aromatic amine was submitted to oxidative coupling reaction with pyrocatechol and ammonium ceric nitrate to form orange color product measured spectrophotometrically with maximum absorption at 467nm. The product was determined through flow injection analysis (FIA) system and all the chemical and physical parameters were optimized. The concentration range from 5.0 to 140.0 μg.mL-1 was obeyed Beer’s law with a limit of detection and quantitatio
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreDetermining the actual amounts of active ingredients in various pharmaceutical commercial forms is still receiving a lot of attention. Two flow injection analysis (FIA) methods were suggested for determination of mesalazine (MES) in pharmaceutical forms. Normal and reverse FIA systems (nFIA and rFIA) combined with UV-Vis spectrophotometric technique were used for the analysis. The methods involved using two mods of FIA systems for measuring a colored product result from coupling of MES with 2,2'-dihydroxybiphenyl after oxidized with sodium periodate in alkaline medium. The absorbance of the red colored dye was measured at maximum wavelength of 500 nm. The calibration graphs for MES were linear in the ranges 2.5-200 and 0.5-60 µg/mL with
... Show Morea simple accurate and sensitive spectrophotometric method for the determination of promethazine HCI has been developed the method is based on the oxidative coupling reaction of promethazine
Amiodarone hydrochloride (AH) has been determined spectrophotometrically Using methyl orange (MO). In our previous researches MO was used for determination of Mexiletine Hydrochloride [1]. The method based on complexation between MO and AH. After shaking and diluting the complex solution with D.W, the pH was adjusted with NaOH and HCl to pH 3. The colored complex formed between AH and the reagent were transferred into separating funnels and extracted using 5.5ml CH2Cl2 and were shaken for (5 minutes). The extracted organic layer was used for preparation of the calibration curves for spectrophotometric measurements of AH at 434nm. The blanks were carried out in exactly the same way throughout the whole procedure.&n
... Show More