Reaction of Na2PdCl4 with benz-1,3-imidazole-2-thione or (bzimtH) benz-1,3-thiazoline2-thione (bztztH) in ethanol / NE3 afford complexes of the type [Pd(bzimt)2](1) and [Pd(bztzt)2](2) respectively. Treatment of [Pd(L)2] L= bzimt or bztzt with bidentate ligands (N^N) where N^N= bipyridine (Bipy) , phenanthroline (Phen) , ethylene diamine , or N,N′dimethylethylene diamine afford mononuclear complexes of the type [PdL2(N^N)]. The bzimt and bztzt ligands are coordinated as bidentate chelating ligands through the S and N in (1) and (2) whereas bonded as a monodentate fashion via the sulfur atom in other complexes. The prepared complexes were characterized by elemental CHN analysis, ir and 1H nmr spectra.
In this work, ZnO quantum dots (Q.dots) and nanorods were prepared. ZnO quantum dots were prepared by self-assembly method of zinc acetate solution with KOH solution, while ZnO nanorods were prepared by hydrothermal method of zinc nitrate hexahydrate Zn (NO3)2.6H2O with hexamethy lenetetramin (HMT) C6H12N4. The optical , structural and spectroscopic properties of the product quantum dot were studied. The results show the dependence of the optical properties on the crystal dimension and the formation of the trap states in the energy band gap. The deep levels emission was studied for n-ZnO and p-ZnO. The preparation ZnO nanorods show semiconductor behavior of p-type, which is a difficult process by doping because native defects.
Introduction: Carrier-based gutta-percha is an effective method of root canal obturation creating a 3-dimensional filling; however, retrieval of the plastic carrier is relatively difficult, particularly with smaller sizes. The purpose of this study was to develop composite carriers consisting of polyethylene (PE), hydroxyapatite (HA), and strontium oxide (SrO) for carrier-based root canal obturation. Methods: Composite fibers of HA, PE, and SrO were fabricated in the shape of a carrier for delivering gutta-percha (GP) using a melt-extrusion process. The fibers were characterized using infrared spectroscopy and the thermal properties determined using differential scanning calorimetry. The elastic modulus and tensile strength tests were dete
... Show MoreIn the current work, Punica granatum L. peel, Artemisia herba-alba Asso., Matricaria chamomilla L., and Camellia sinensis extracts were used to prepare manganese dioxide (MnO2) nanoparticles utilizing a green method. Energy-dispersive X-ray (EDX) analysis, Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Filed emission-scanning electron microscopy (FE-SEM) analysis were used to evaluate the produced MnO2 NPs. FE-SEM pictures demonstrated how agglomerated nanoparticles formed. According to FE-SEM calculations, the particle size ranged from 18.7-91.5 nm. FTIR spectra show that pure Mn-O is formed, while EDX results show that Mn and O are present. The ability to suppress biofilm growth in the produced MnO
By unusual method for separating two isomers of a substituted nitro-coumarin using a soxhlet extractor and in controlling temperature to get a selective nitration reaction, several new Schiff base coumarins were synthesized from nitro coumarins as starting material, which were reduced by Fe in glacial acetic acid to produce corresponding amino coumarin derivatives. Then the latter was reacted with different aromatic aldehydes to produce the desired Schiff bases derivatives. After characterization by Fourier transform infrared (FT-IR), Proton nuclear magnetic resonance (1HNMR) and Carbon-13 nuclear magnetic resonance (C-NMR), all these compounds were evaluated as potential Antimicrobial and Antioxidant Agents.
This work introduces the synthesis and the characterization of N-doped TiO2 and Co3O4 thin films prepared via DC reactive magnetron sputtering technique. N-doped TiO2 thin films was deposited on indium-tin oxide (ITO) conducting substrate at different nitrogen ratios, then the Co3O4 thin film was deposited onto the N-doped TiO2 layer to synthesize a double-layer TiO2-N/Co3O4 Photoelectrochromic device. Several techniques were used to characterize the produces which are x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy and UV–Vis spectroscopy. The Photoelectrochromic device was characterized by UV–Vis spectroscopy and the results show that the double-layer N-dope
... Show MoreIn this paper we proposed the method of X-ray fluorescence (XRF) determination of some essential trace elements in medicinal herbs and vitamin-mineral complexes at the level of 100-101 mg/ml. To increase sensitivity and selectivity of the determination we simple and effective approach based on the extraction of metal ions from aqueous solutions with chemically modified polyurethane foam sorbents followed by direct XRF analysis. The conditions of sorption preconcentration of Co(II), Ni(II) and Zn(II) ions with modified sorbents were optimized. The proposed approach is used for the determination of trace elements in several kinds of medicinal herbs (coltsfoot leaves, nettle leaves and yarrow herb) and vitamin-mineral
... Show MoreReservoir characterization is an important component of hydrocarbon exploration and production, which requires the integration of different disciplines for accurate subsurface modeling. This comprehensive research paper delves into the complex interplay of rock materials, rock formation techniques, and geological modeling techniques for improving reservoir quality. The research plays an important role dominated by petrophysical factors such as porosity, shale volume, water content, and permeability—as important indicators of reservoir properties, fluid behavior, and hydrocarbon potential. It examines various rock cataloging techniques, focusing on rock aggregation techniques and self-organizing maps (SOMs) to identify specific and
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namely 7-Ethyl-4-methyl-1-[(4-nitro-benzylidene)-amino]-1H-quinolin-2-one (EMNQ2O). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G/ 2d, 2p level was carried out to calculate the geometrical structure, physical properties and chemical inhibition chemical parameters, with the local reactivity in order to predict both the reactive centers and to know the possible sites of nucleophilic and electrophilic attacks, in vacuum and two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in (3.5% NaCl)
... Show MoreBackground: Asymmetry assessment is an important component of orthodontic diagnosis and treatment planning. Several studies attempted to find the relationship between craniometric asymmetry and skeletal jaws relationship and many authors found some extent of asymmetry in individuals with normal jaws relationship. The use of Computed tomography (CT) allows for the assessment of asymmetry on a dimensionally accurate volumetric image, aim of the study is to determine if there are differences in craniometric asymmetry between patient with skeletal class I and patients with skeletal class II relationship using Helical CT scan. Materials and Methods: Ninety individuals with clinically symmetrical faces were imaged with Helical CT scan, and aging
... Show More