This paper applies the Modified Adomian Decomposition Method (MADM) for solving Integro-Differential Inequality, this method is one of effective to construct analytic approximate solutions for linear and nonlinear integro-differential inequalities without solving many integrals and transformed or discretization. Several examples are presented, the analytic results show that this method is a promising and powerful for solving these problems.
The work in this paper focuses on solving numerically and analytically a nonlinear social epidemic model that represents an initial value problem of ordinary differential equations. A recent moking habit model from Spain is applied and studied here. The accuracy and convergence of the numerical and approximation results are investigated for various methods; for example, Adomian decomposition, variation iteration, Finite difference and Runge-Kutta. The discussion of the present results has been tabulated and graphed. Finally, the comparison between the analytic and numerical solutions from the period 2006-2009 has been obtained by absolute and difference measure error.
Statin drugs act by inhibiting the enzyme HMG-CoA reductase which is responsible for manufacture of cholesterol and the biosynthesis essential energy production Co-factor (Coenzyme Q10). The aim from this research includes study the effect of statin drugs (Simvastatin and Atorvastatin) on the Coenzyme Q10 using differential pulse polarographic technique at a dropping mercury electrode (DME) and in a mixture of [4:1] methanol-phosphate buffer of pH7.0 as supporting an electrolyte. Prior to this, the behaviors of Simvastatin, Atorvastatin and Coenzyme Q10 were studied separately in their solvents. The half-wave potential (E1/2) of Co Q10 were -0.31volt and -1.37Volt, -1.33 Volt for simvastatin and atorvastatin respectively. A mixture of Co
... Show MoreThe estimation of the initial oil in place is a crucial topic in the period of exploration, appraisal, and development of the reservoir. In the current work, two conventional methods were used to determine the Initial Oil in Place. These two methods are a volumetric method and a reservoir simulation method. Moreover, each method requires a type of data whereet al the volumetric method depends on geological, core, well log and petrophysical properties data while the reservoir simulation method also needs capillary pressure versus water saturation, fluid production and static pressure data for all active wells at the Mishrif reservoir. The petrophysical properties for the studied reservoir is calculated using neural network technique
... Show MoreThis research investigated the importance and priorities of the project overhead costs in Iraq via a questionnaire using the fuzzy analytic hierarchy process technique (FAHP). Using this technique is very important in the uncertain circumstances as in our country. The researcher reached to frame an equation through the results of the priorities of weights include the percentages of each of the main items of the project overhead costs. The researcher tested this equation by applying it to one of the completed projects and the results showed suitability for the application. The percentages of the (salaries, grants, and incentives) and (fieldwork requirements) in equation represent approximately two-thirds of project overhe
... Show MoreThe aesthetic and technical expertise help in producing the artistic work and achieving results in aesthetic formulations that reflect the aesthetic and expressive dimensions and the reflective dimensions of the pottery, surpassing its traditions, asserting its active presence in life, cherishing it even when it breaks or get damaged by employing techniques that are originated from the Japanese environment.
The research problem is to study how ( Kintsugi) technique and similar techniques are used to create new rebirths of pottery piec
... Show MoreIn this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative
... Show More