A range of macrocyclic dinuclear metal (II) dithiocarbamate-based complexes are reported. The preparation of complexes was accomplished from either mixing of the prepared ligand with a metal ion or through a template one-pot reaction. The preparation of the bisamine precursor was achieved through several synthetic steps. The free ligand; potassium 2,2'-(biphenyl-4,4'-diylbis(azanediyl))bis(1-chloro-2-oxoethane-2,1diyl)bis(cyclohexylcarbamodithioate) (L) was yielded from the addition of CS2 to a bis-amine precursor in KOH medium.A variety of analytical and physical methods were implemented to characterise ligand and its complexes. The analyses were based on spectroscopic techniques (FTIR, UV-Vis, mass spectroscopy and 1H, 13C-NMR spectroscopy), melting points, elemental analysis, thermal properties, magnetic susceptibility and conductance. The analytical and physical techniques confirmed the formation of macrocyclic complexes of the general formulae [M(L)]2 (M= MnII, CoII, NiII, CuII, ZnII and CdII). The proposed structure around MnII, CoII, ZnII and CdII is a tetrahedral, while NiII and CuII complexes adopt square planar geometries. The prepared compounds were screened against four bacterial species (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus stubtilis). The anti-bacterial test indicated that the complexes are more active against these bacterial strains, compared with the free ligand.
Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the
... Show MoreThin films of Mn2O3 doped with Cu have been fabricated using the simplest and cheapest chemical spray pyrolysis technique onto a glass substrate heated up to 250 oC. Transmittance and absorptance spectra were studied in the wavelength range (300 -1100) nm. The average transmittance at low energy was about 60% and decrease with Cu doping, Optical constants like refractive index, extinction coefficient and dielectric constants (εr), (εi) are calculated and correlated with doping process.
In this work, study the optical properties of composites consisting of poly Methyl Methacrylate and Berry Paper Mulberry. The samples of composites were prepared using casting method .The Berry Paper Mulberry (BPM) was added by different concentrations are (0, 2, 4 and 6)wt.%. The optical properties of composites have been studied in the wavelength range (200-800)nm. The absorption coefficient ,energy gap, refractive index, extinction coefficient and dielectric constants have been determined. The results show that the optical constants change with increase of BPM concentrations .
The study aims to reveal the degree of application of the alternative evaluation strategy in social studies in public education in the Kingdom of Saudi Arabia. It also aims to identify the opinions of experts on how to implement this. The study adopted the mixed methodology, which represented in the descriptive-analytical method, and qualitative methods through the grounded theory. The study used two tools namely: a questionnaire for assessments of social studies teachers and semi-structured interview questions. The results of the study showed a medium degree of appreciation for the application of alternative evaluation strategies by social studies teachers in general education with an average of (2.28). The results also showed that ther
... Show MoreThe influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee
... Show MoreIn this work, an enhanced Photonic Crystal Fiber (PCF) based on Surface Plasmon Resonance (SPR) sensor using a sided polished structure for the detection of toxic ions Arsenic in water was designed and implemented. The SPR curve can be obtained by polishing the side of the PCF after coating the Au film on the side of the polished area, the SPR curve can be obtained. The proposed sensor has a clear SPR effect, according to the findings of the experiments. The estimated signal to Noise Ratio (SNR), sensitivity (S), resolution (R), and Figures of merit (FOM) are approaching; the SNR is 0.0125, S is 11.11 μm/RIU, the resolution is 1.8x〖10〗^(-4), and the FOM is 13.88 for Single-mode Fiber- Photonic Crystal Fiber- single mode Fiber (SMF-P
... Show MoreAim of the research is the study of improving the performance of the thermal station south Baghdad and the main reasons for reduced its efficiency. South Baghdad power planet comprises (6) steam turbine units and (18) gas turbine units .The gas turbine units are composed of two groups: the first group is made up of gas units (1,2), each of capacity (123) MW. The design efficiency of gas turbine units is 32%. The actual efficiency data of steam units is 18.3% instead of 45% which is the design efficiency. The main reason for efficiency reduction of gas units is the rejected thermal energy with the exhaust gases to atmosphere, that are (450-510) ℃.The bad type of fuel used (heavy) fuel. Another reason for the low efficiency and has a neg
... Show MoreIn this research, thin films of CdO: Mg and n-CdO: Mg/ p-Si heterojunction with thickness (500±50) nm have been deposited at R.T (300 K) by thermal evaporation technique. These samples have been annealed at different annealing temperatures (373 and 473) K for one hour. Structural, optical and electrical properties of {CdO: Mg (1%)} films deposited on glass substrate as a function of annealing temperature are studied in detail. The C-V measurement of n-CdO: Mg/ p-Si heterojunction (HJ) at frequency (100 KHz) at different annealing temperatures have shown that these HJ were of abrupt type and the builtin potential (Vbi) increase as the annealing temperature increases. The I-V characteristics of heterojunction prepared under dark case at
... Show MoreHeat transfer around a flat plate fin integrated with piezoelectric actuator used as oscillated fin in laminar flow has been studied experimentally utilizing thermal image camera. This study is performed
for fixed and oscillated single and triple fins. Different substrate-fin models have been tested, using fins of (35mm and 50mm) height, two sets of triple fins of (3mm and 6mm) spacing and three frequencies
applied to piezoelectric actuator (5, 30 and 50HZ). All tests are carried out for (0.5 m/s and 3m/s) in subsonic open type wind tunnel to evaluate temperature distribution, local and average Nusselt number (Nu) along the fin. It is observed, that the heat transfer enhancement with oscillation is significant compared to without o
In this study, SnS thin films were deposited onto glass substrate by thermal evaporation technique at 300K temperature. The SnS films have been prepared with different thicknesses (100,200 &300) nm. The crystallographic analysis, film thickness, electrical conductivity, carrier concentration, and carrier mobility were characterized. Measurements showed that depending on film thickness. The D.C. conductivity increased with increase in film thickness from 3.720x10-5 (Ω.cm)-1 for 100 nm thickness to 9.442x10-4 (Ω.cm)-1 for 300 nm thicknesses, and the behavior of activation energies, hall mobility, and carrier concentration were also studied.