In this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.
Often times, especially in practical applications, it is difficult to obtain data that is not tainted by a problem that may be related to the inconsistency of the variance of error or any other problem that impedes the use of the usual methods represented by the method of the ordinary least squares (OLS), To find the capabilities of the features of the multiple linear models, This is why many statisticians resort to the use of estimates by immune methods Especially with the presence of outliers, as well as the problem of error Variance instability, Two methods of horsepower were adopted, they are the robust weighted least square(RWLS)& the two-step robust weighted least square method(TSRWLS), and their performance was verifie
... Show Morein this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
It was found that there was a significant correlation between all tests of the mechanical and electrical activity of the heart (systolic force FC, stroke volume SV, end-diastolic volume, EF volume, and left ventricular volume during diastole LVDD) with the test of the oxygen-phosphating energy system (Markaria). - As safe (Margaria-Kalamen( It was found that there is a significant correlation between all tests of the mechanical and electrical activity of the heart (myocardial systolic force FC, stroke volume SV, end-diastolic volume EDV, and the percentage of heart pumpingEF blood, and left ventricular volume during diastole (LVDD) with the Lactational Oxygen Energy System Test (Wingate Test 30 Second(
This paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
In this paper Heun method has been used to find numerical solution for first order nonlinear functional differential equation. Moreover, this method has been modified in order to treat system of nonlinear functional differential equations .two numerical examples are given for conciliated the results of this method.
With the quick grow of multimedia contents, from among this content, face recognition has got a lot of significant, specifically in latest little years. The face as object formed of various recognition characteristics for detect; so, it is still the most challenge research domain for researchers in area of image processing and computer vision. In this survey article, tried to solve the most demanding facial features like illuminations, aging, pose variation, partial occlusion and facial expression. Therefore, it indispensable factors in the system of facial recognition when performed on facial pictures. This paper study the most advanced facial detection techniques too, approaches: Hidden Markov Models, Principal Component Analysis (PCA)
... Show MoreIn this work, the fusion cross section , fusion barrier distribution and the probability of fusion have been investigated by coupled channel method for the systems 46Ti+64Ni, 40Ca+194Pt and 40Ar+148Sm with semi-classical and quantum mechanical approach using SCF and CCFULL Fortran codes respectively. The results for these calculations are compared with available experimental data. The results show that the quantum calculations agree better with experimental data, especially bellow the Coulomb barrier, for the studied systems while above this barrier, the two codes reproduce the data.