In this paper, we present some numerical methods for solving systems of linear FredholmVolterra integral equations of the second kind. These methods namely are the Repeated Trapezoidal Method (RTM) and the Repeated Simpson's 1/3 Method (RSM). Also some numerical examples are presented to show the efficiency and the accuracy of the presented work.
This paper was conducted to identifying the body growth averages for the infants of the age (3-6) months and their relation with brest (natural ) or artificial feeding The results showed that the higher percentage was for the infants with the natural feeding in comparison with those of the artificial or mixed feeding. Also there was a clear increase in the average of the body growth for those with the natural feeding and such results were closer to the standard criterion. While the averages of body growth for those with the artificial or mixed feeding were low. In addition, it was clear that the averages of body growth of the i
... Show MoreIn this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using Mathcad 15.and graphic in Matlab R2015a.
The monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show MoreIn this work, we use the explicit and the implicit finite-difference methods to solve the nonlocal problem that consists of the diffusion equations together with nonlocal conditions. The nonlocal conditions for these partial differential equations are approximated by using the composite trapezoidal rule, the composite Simpson's 1/3 and 3/8 rules. Also, some numerical examples are presented to show the efficiency of these methods.
The present work aims to achieve pulsed laser deposition ofTiO2 nanostructures and investigate their nonlinear properties using z-scan technique.The second harmonic Q-switched Nd: YAG laser at repetition rate of 1Hz and wavelength of 532 nm with three different laser fluencies in the range of 0.77-1.1 J/cm2 was utilized to irradiate the TiO2 target. The products of laser-induced plasma were characterized by utilizing UV-Vis absorption spectroscopy, x-ray diffraction (XRD), atomic force Microscope (AFM),and Fourier transform infrared (FTIR). A reasonable agreement was found among the data obtained usingX-Ray diffraction, UV-Vis and Raman spectroscopy. The XRD results showed that the prepared TiO2
... Show More
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreThis paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.
This work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The purpose of this research paper is to present the second-order homogeneous complex differential equation , where , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some applications.