Preferred Language
Articles
/
jih-1017
On the Riesz Means of Expansion by Riesz Bases Formed by Eigen Functions for the Ordinary Differential Operator of 2mth Order
...Show More Authors

  The aim of this paper is to prove a theorem on the Riesz means of expansions with respect to Riesz bases, which extends the previous results of [1] and [2] on the Schrödinger operator and the ordinary differential operator of 4-th order to the operator of order 2m by using the eigen functions of the ordinary differential operator. Some Symbols that used in the paper:     the uniform norm. <,>   the inner product in L2. ï‚¶G   the set of all boundary elements of G. ˆ u   the dual function of u.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Mar 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Degree of Best Approximation of Unbounded Functions by Algebraic Polynomial
...Show More Authors

  In this paper we introduce a new class of degree of best algebraic approximation polynomial Α,, for unbounded functions in weighted space Lp,α(X), 1 ∞ .We shall prove direct and converse theorems for best algebraic approximation in terms modulus of smoothness in weighted space

View Publication Preview PDF
Publication Date
Sun Mar 02 2014
Journal Name
Baghdad Science Journal
An Approximated Solutions for nth Order Linear Delay Integro-Differential Equations of Convolution Type Using B-Spline Functions and Weddle Method
...Show More Authors

The paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.

View Publication Preview PDF
Crossref
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On the Growth of Solutions of Nonhomogeneous Higher order Complex Linear Differential Equations
...Show More Authors

The nonhomogeneous higher order linear complex differential equation (HOLCDE) with meromorphic (or entire) functions is considered in this paper. The results are obtained by putting some conditions on the coefficients to prove that the hyper order of any nonzero solution of this equation equals the order of one of its coefficients in case the coefficients are meromorphic functions. In this case, the conditions were put are that the lower order of one of the coefficients dominates the maximum of the convergence exponent of the zeros sequence of it, the lower order of both of the other coefficients and the nonhomogeneous part and that the solution has infinite order. Whiles in case the coefficients are entire functions, any nonzero solutio

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 30 2024
Journal Name
Iraqi Journal Of Science
On Certain Subclass of Meromorphic Multivalent Functions Associated with Fractional Calculus Operator
...Show More Authors

     In this paper, the class of meromorphic multivalent functions of the form by using fractional differ-integral operators is introduced. We get Coefficients estimates, radii of convexity and star likeness. Also closure theorems and distortion theorem for the class ,  is calculaed.

View Publication
Scopus Crossref
Publication Date
Thu Sep 13 2018
Journal Name
Baghdad Science Journal
An Efficient Numerical Method for Solving Volterra-Fredholm Integro-Differential Equations of Fractional Order by Using Shifted Jacobi-Spectral Collocation Method
...Show More Authors

The aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Turbid of Water By Using Fuzzy C- Means and Hard K- Means
...Show More Authors

In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected  from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
Turbid of Water By Using Fuzzy C- Means and Hard K- Means
...Show More Authors

In this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected  from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
The Composition operator on hardy space H2 Induced by ?(z)=sz+t where , and
...Show More Authors

We study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Posterior Estimates for the Parameter of the Poisson Distribution by Using Two Different Loss Functions
...Show More Authors

In this paper, Bayes estimators of Poisson distribution have been derived by using two loss functions: the squared error loss function and the proposed exponential loss function in this study, based on different priors classified as the two different informative prior distributions represented by erlang and inverse levy prior distributions and non-informative prior for the shape parameter of Poisson distribution. The maximum likelihood estimator (MLE) of the Poisson distribution has also been derived. A simulation study has been fulfilled to compare the accuracy of the Bayes estimates with the corresponding maximum likelihood estimate (MLE) of the Poisson distribution based on the root mean squared error (RMSE) for different cases of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Convergence of the Generalized Homotopy Perturbation Method for Solving Fractional Order Integro-Differential Equations
...Show More Authors

In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.

... Show More
View Publication Preview PDF
Crossref (1)
Crossref