Preferred Language
Articles
/
jhf0mo0BVTCNdQwCsBb5
Enhancing Asphalt Performance and Its Long-Term Sustainability with Nano Calcium Carbonate and Nano Hydrated Lime
...Show More Authors

Nanomaterials enhance the performance of both asphalt binders and asphalt mixtures. They also improve asphalt durability, which reduces resource consumption and environmental impact in the long term associated with the production and transportation of asphalt materials. Thus, this paper studies the effectiveness of Nano Calcium Carbonate (Nano CaCO3) and Nano Hydrated Lime (NHL) as modifiers and examines their impact on ranges from 0% to 10% through comprehensive laboratory tests. Softening point, penetration, storage stability, viscosity, and mass loss due to short-term aging using the Rolling Thin Film Oven Test (RTFO) were performed on asphalt binders. Results indicated a significant improvement in binder stiffness, particularly at 4% Nano CaCO3 and 6% NHL content by weight. Dynamic Shear Rheometer (DSR) tests further revealed substantial improvements in rutting resistance, with NHL exhibiting superior high-temperature stability and a notable increase in the rutting factor. Marshall stability tests on asphalt concrete (AC) mixtures showed a 22.3% increase in stability with 6% NHL by weight, surpassing the 20.2% improvement observed with Nano CaCO3 and indicating enhanced load-bearing capacity. The resilient modulus of the mixtures consistently increased with the addition of NHL, suggesting improved durability in rutting. Moisture susceptibility tests revealed that NHL significantly enhances moisture resistance, exceeding the 80% TSR benchmark at just 2% content by weight and reaching an impressive 94.6% at 10% content by weight. In contrast, Nano CaCO3 demonstrated a more gradual improvement, achieving an 88.2% TSR at 10% content. Furthermore, permanent deformation analysis indicated a 68.64% improvement in rutting resistance with 10% NHL content by weight, exceeding Nano CaCO3’s improvement rate. Optimal fatigue resistance was achieved at 4% for Nano CaCO3 and 6% for NHL by weight, with respective CT index improvements of 30% and 35.4%, showing NHL’s consistent benefits across various nanomaterial contents. Overall, the study suggests that both Nano CaCO3 and NHL positively impact asphalt performance, with NHL offering more pronounced benefits across a range of properties. These findings provide valuable insights for pavement engineers and underscore NHL’s potential as an effective additive in asphalt mixture design. Real-world applications and validations are essential for a comprehensive understanding of these nanomaterials in practical pavement engineering scenarios.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 30 2021
Journal Name
Modern Sport
Motor capacity and its relationship with some indicators Albaiukinmetekih and performance of the wheel of human skill
...Show More Authors

The research problem is represented in the weakness of reliance on the role of some motor abilities (flexibility, balance and compatibility) in biomechanical indicators and the performance of a large number of gymnastics skills, including the skill of the human wheel, in addition to the lack of reliance on the use of video imaging of the skill in order to analyze its path and identify its weaknesses. The research aimed to identify the relationship between motor abilities, biomechanical indicators and the degree of performance of the skill of the human wheel, and the descriptive method was used on its own, chosen in an intentional method, consisting of (10) students from the third stage in the Department of Physical Education and Sp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 14 2021
Journal Name
Sustainability
Influence of Iron Filing Waste on the Performance of Warm Mix Asphalt
...Show More Authors

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% b

... Show More
View Publication
Scopus (19)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Tue Oct 11 2022
Journal Name
College Of Islamic Sciences
Hanbali's approach to building long and short travel provisions with issues attached to their provisions
...Show More Authors

 

The problem with research lies in hiding the Hanbali approach in building long and short travel provisions, as well as hiding some provisions relating to short travel that are not provided for by the jurists of Hanbali (in their books).

The research aims to demonstrate the approach and standards on which they based the long and short travel provisions, as well as to reflect the provisions of some of the issues that are silent on long and short travel, with evidence and significance.

The research included a preface and two researches, the researcher in the preface talked about the reality of long and short travel, in the first research on the approach of ha

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 17 2019
Journal Name
Aip Conference Proceedings
Annealing effect on characterization of nano crystalline SnSe thin films prepared by thermal evaporation
...Show More Authors

Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Feb 18 2025
Journal Name
Proceedings Of The 3rd International Conference On Engineering And Innovative Technology
Study the effect of nano vibration amplitude on the electromagnetic interaction of CMC structure
...Show More Authors

Vibration is a source of energy that can be beneficial or harmful based on the application. Vibration can affect the function of any structure; however, Ceramic matrix composite (CMC) is one of these structures. Whereby less studies have been concentrated on study its function specially when electromagnetic wave (microwave) exposed on its surface to perform its designed function. To address this concept, SiC composite has been fabricated which is designed to have a transparent characteristics to microwave. External vibration had been applied on its surface to monitor how much influence could nanoscale amplitude vibration damage the microwave interaction. The source of vibration was applied from piezoelectric and the vibration was monitored

... Show More
View Publication
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Physics Conference Series
Enhanced phot-respons of porous silicon photo- detectors by embedding Titanium -dioxide nano-particles
...Show More Authors

: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e

... Show More
Publication Date
Mon Aug 01 2022
Journal Name
Computational And Theoretical Chemistry
Potential application of some metal decorated AlP nano-sheet for detection of boron trichloride
...Show More Authors

BCl3 is toxic gas and its detection is of great importance. Thus, here, B3LYP, M06-2X, and B97D density functionals are utilized for probing the effect of decorating Zn, Cd, and Au on the sensing performance of an AlP nano-sheet (AlPNS) in detecting the BCl3. We predict that the interaction of pure AlPNS with BCl3 is physisorption, and the sensing response (SR) of AlPNS is approximately 9.2. The adsorption energy of BCl3 changes from −4.1 to −18.8, −19.1, and −19.5 kcal/mol by decorating the Zn, Cd, and Au metals into the AlPNS surface, respectively. Also, the corresponding SR meaningfully rises to 40.4, 59.0, and 80.9, indicating that by increasing the atomic number of metals, the sensitivity of metal decorated AlPNS (metal@AlPNS)

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Thu Sep 06 2018
Journal Name
Al-khwarizmi Engineering Journal
Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials
...Show More Authors

Addition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
International Journal Of Greenhouse Gas Control
Wettability of nano-treated calcite/CO2 /brine systems: Implication for enhanced CO2 storage potential
...Show More Authors

Nanofluids are proven to be efficient agents for wettability alteration in subsurface applications including enhanced oil recovery (EOR). Nanofluids can also be used for CO2-storage applications where the CO2-wet rocks can be rendered strongly water-wet, however no attention has been given to this aspect in the past. Thus in this work we presents contact angle (θ) measurements for CO2/brine/calcite system as function of pressure (0.1 MPa, 5 MPa, 10 MPa, 15 MPa, and 20 MPa), temperature (23 °C, 50 °C and 70 °C), and salinity (0, 5, 10, 15, and 20% NaCl) before and after nano-treatment to address the wettability alteration efficiency. Moreover, the effect of treatment pressure and temperature, treatment fluid concentration (SiO2 wt%) and

... Show More
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
The optical properties of C\Mg, nano-rods produced by the explosion wire technique
...Show More Authors
Abstract<p>The aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref