Preferred Language
Articles
/
jhbDlYcBVTCNdQwCd1bI
Fuzzy orbit topological spaces
...Show More Authors
Abstract<p>The concept of fuzzy orbit open sets under the mapping <italic>f</italic>:<italic>X</italic> → <italic>X</italic> in a fuzzy topological space (<italic>X</italic>,<italic>τ</italic>) was introduced by Malathi and Uma (2017). In this paper, we introduce some conditions on the mapping <italic>f</italic>, to obtain some properties of these sets. Then we employ these properties to show that the family of all fuzzy orbit open sets construct a new fuzzy topology, which we denoted by <italic>τ</italic> <sub> <italic>F0</italic> </sub> coarser than <italic>τ</italic>. As a result, a new fuzzy topological space (<italic>X</italic>, <italic>τ</italic> <sub> <italic>F0</italic> </sub>) is obtained. We refer to this topological space as a fuzzy orbit topological space. In addition, we define the notion of fuzzy orbit interior (closure) and study some of their properties. Finally, the category of fuzzy orbit topological spaces <inline-formula> <tex-math> <?CDATA ${\mathbb{F}}{\mathbb{O}}TOP$?> </tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="double-struck">F</mi> <mi mathvariant="double-struck">O</mi> <mi>T</mi> <mi>O</mi> <mi>P</mi> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MSE_571_1_012026_ieqn1.gif" xlink:type="simple"></inline-graphic> </inline-formula> is defined, and we prove it can be embedded in the category of fuzzy topological spaces <inline-formula> <tex-math> <?CDATA ${\mathbb{F}}TOP$?> </tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="double-struck">F</mi> <mi>T</mi> <mi>O</mi> <mi>P</mi> </mrow> </math> <inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="MSE_571_1_012026_ieqn2.gif" xlink:type="simple"></inline-graphic> </inline-formula>.</p>
Scopus Crossref
View Publication