Preferred Language
Articles
/
jeasiq-99
Comparison Bayes Estimators of Reliability in the Exponential Distribution
...Show More Authors

Abstract

           We produced a study in Estimation for Reliability of the Exponential distribution based on the Bayesian approach. These estimates are derived using Bayesian approaches. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .we derived bayes estimators of reliability under four types when the prior distribution for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And estimators for Reliability is obtained using the well known squared error loss function and weighted squared errors loss function. We used simulation technique, to compare the resultant estimators in terms of their mean squared errors (MSE), mean weighted squared errors (MWSE).Several cases  assumed for the parameter of the exponential distribution for data generating, of different samples sizes (small, medium, and large). The results were obtained by using simulation technique, Programs written using MATLAB-R2008a program were used. In general, Simulation results shown that the resultant estimators in terms of their mean squared errors (MSE) is better than the resultant estimators in terms of their mean weighted squared errors (MWSE).According to the our criteria is the best estimator  that gives the smallest value of MSE or  MWSE .  For example bayes estimation is the best when the prior distribution for the scale parameter is improper and Non-informative distributions  according to the smallest  value  of  MSE  comparative to the values of MWSE  for all samples sizes at some of true value of t and . 

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
On Shrunken Estimation of Generalized Exponential Distribution
...Show More Authors

This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.

The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 08 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Bayes estimators for reliability and hazard function of Rayleigh-Logarithmic (RL) distribution with application
...Show More Authors

In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application

Publication Date
Sun Jun 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Notes on Exponential Distribution
...Show More Authors

المتغير العشوائي X  له توزيع أسي اذا كان له دالة احتمالية الكثافة بالشكل:

عندما  ، هذه هي الحالة الخاصة لتوزيع كاما.

غالباً جداً ولسبب معقول تأخذ . الحالة الخاصة لـ (1) التي نحصل عليها تسمى بالتوزيع الاسي لمعلمة واحدة.

اذا كانت  ، ، التوزيع في هذه الحالة يسمى التوزيع الاسي القياسي

اما بالنسب

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Proposed Entropy Loss function and application to find Bayesian estimator for Exponential distribution parameter
...Show More Authors

The aim of this paper to find Bayes estimator under new loss function assemble between symmetric and asymmetric loss functions, namely, proposed entropy loss function, where this function that merge between entropy loss function and the squared Log error Loss function, which is quite asymmetric in nature. then comparison a the Bayes estimators of exponential distribution under the proposed function, whoever, loss functions ingredient for the proposed function the using a standard mean square error (MSE) and Bias quantity (Mbias), where the generation of the random data using the simulation for estimate exponential distribution parameters different sample sizes (n=10,50,100) and (N=1000), taking initial

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
A comparison of the Semiparametric Estimators model smoothing methods different using
...Show More Authors

In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes  n=40,60,100,variances used σ2=0.5,1,1.5 the results  for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
"Comparison of Approximate Estimation Methods for Logistics Distribution Teachers"
...Show More Authors

The goal beyond this Research is to review methods that used to estimate Logistic distribution parameters. An exact estimators method which is the Moment method, compared with other approximate estimators obtained essentially from White approach such as: OLS, Ridge, and Adjusted Ridge as a suggested one to be applied with this distribution. The Results of all those methods are based on Simulation experiment, with different models and variety of  sample sizes. The comparison had been made with respect to two criteria: Mean Square Error (MSE) and Mean Absolute Percentage Error (MAPE).  

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparing parameters and Reliability of two-parameters exponential
...Show More Authors

One of the most important problems in the statistical inference is estimating parameters and Reliability parameter and also interval estimation , and testing hypothesis . estimating two parameters of exponential distribution and also reliability parameter in a stress-strength model.

This parameter deals with estimating the scale parameter and the Location parameter µ , of two exponential distribution   ,using moments estimator and maximum likelihood estimator , also we estimate the parameter R=pr(x>y), where x,y are two- parameter independent exponential random variables .

Statistical properties of this distribution and its properti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of some of reliability and Hazard estimation methods for Rayleigh logarithmic distribution using simulation with application
...Show More Authors

The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.

In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
NONPARAMETRIC And Semiparametric Bayesian Estimators in survival function analysis
...Show More Authors

 Most statistical research generally relies on the study of the behaviour of different phenomena during specific time periods and the use of the results of these studies in the development of appropriate recommendations and decision-making and for the purpose of statistical inference on the parameters of the statistical distribution of life times in  The technical staff of most of the manufacturers in the research units of these companies deals with censored data, the main objective of the study of survival is the need to provide information that is the basis for decision making and must clarify the problem and then the goals and limitations of this study and that  It may have different possibilities to perform the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation
...Show More Authors

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

View Publication Preview PDF
Crossref