Preferred Language
Articles
/
jeasiq-996
Comparing Between Shrinkage &Maximum likelihood Method For Estimation Parameters &Reliability Function With 3- Parameter Weibull Distribution By Using Simulation

The 3-parameter Weibull distribution is used as a model for failure since this distribution is proper when the failure rate somewhat high in starting operation and these rates will be decreased with increasing time .

In practical side a comparison was made between (Shrinkage and Maximum likelihood) Estimators for parameter and reliability function using simulation , we conclude that the Shrinkage estimators for parameters are better than maximum likelihood estimators but the maximum likelihood estimator for reliability function is the better using statistical measures (MAPE)and (MSE) and for different sample sizes.

Note:- ns : small sample ; nm=median sample ; nl=large sample.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Maximum Likelihood and Bayesian Methods For Estimating The Gamma Regression With Practical Application

In this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Using Bayesian method to estimate the parameters of Exponential Growth Model with Autocorrelation problem and different values of parameter of correlation-using simulation

We have studied Bayesian method in this paper by using the modified exponential growth model, where this model is more using to represent the growth phenomena. We focus on three of prior functions (Informative, Natural Conjugate, and the function that depends on previous experiments) to use it in the Bayesian method. Where almost of observations for the growth phenomena are depended on one another, which in turn leads to a correlation between those observations, which calls to treat such this problem, called Autocorrelation, and to verified this has been used Bayesian method.

The goal of this study is to knowledge the effect of Autocorrelation on the estimation by using Bayesian method. F

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Feb 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between method penalized quasi- likelihood and Marginal quasi-likelihood in estimating parameters of the multilevel binary model

Multilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of  the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compare between simex and Quassi-likelihood methods in estimation of regression function in the presence of measurement error

       In recent years, the attention of researchers has increased of semi-parametric regression models, because it is possible to integrate the parametric and non-parametric regression models in one and then form a regression model has the potential to deal with the cruse of dimensionality in non-parametric models that occurs through the increasing of explanatory variables. Involved in the analysis and then decreasing the accuracy of the estimation. As well as the privilege of this type of model with flexibility in the application field compared to the parametric models which comply with certain conditions such as knowledge of the distribution of errors or the parametric models may

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Dec 04 2017
Journal Name
Al-qadisiyah Journal For Administrative And Economic Sciences
Survival Function Estimating of Single age Groups for Generalized Gamma Distribution with Simulation.

The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the

... Show More
Preview PDF
Publication Date
Sun Feb 28 2021
Journal Name
Journal Of Economics And Administrative Sciences
The use of the genetic algorithm to estimate the parameters function of the hypoexponential distribution by simulation

In this research, the focus was placed on estimating the parameters of the Hypoexponential distribution function using the maximum likelihood method and genetic algorithm. More than one standard, including MSE, has been adopted for comparison by Using the simulation method

Crossref
View Publication Preview PDF
Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared erro

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Comparison Between the Bayes Estimator and the Maximum Likelihood Estimator of the Reliability Function for Negative Exponential Distribution

     In this paper, the maximum likelihood estimator and the Bayes estimator of the reliability function for negative exponential distribution has been derived, then a Monte –Carlo simulation technique was employed to compare the performance of such estimators. The integral mean square error (IMSE) was used as a criterion for this comparison. The simulation results displayed that the Bayes estimator performed better than the maximum likelihood estimator for different samples sizes.

Crossref
View Publication Preview PDF