Preferred Language
Articles
/
jeasiq-985
ESTIMATION OF COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES WITH APPLICATIONS
...Show More Authors

In this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme  value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS  & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients , goodness of fit statistics based on the observed residuals are considered . As a conclusion and  through the probability plot test we get no evidence against using the assumed residuals distribution.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed May 11 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods For A single Imputed A missing Observation In Estimating Nonparametric Regression Function
...Show More Authors

In this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.      

View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
"RUF procedures forgetting the best subset linear regression model"
...Show More Authors

The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Quadratic Form Ratio Multiple Test to Estimate Linear Regression Model Parameters in Big Data with Application: Child Labor in Iraq
...Show More Authors

              The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances.  From the diversity of Big Data variables comes many challenges that  can be interesting to the  researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad
...Show More Authors

     The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed.

     Was conducted to compare the two methods above and it became clear by comparing the  logistic regression model best of a Linear Discriminant  function written

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Aug 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of the performance of some r- (k,d) class estimators with the (PCTP) estimator that used in estimating the general linear regression model in the presence of autocorrelation and multicollinearity problems at the same time "
...Show More Authors

In the analysis of multiple linear regression, the problem of multicollinearity and auto-correlation drew the attention of many researchers, and given the appearance of these two problems together and their bad effect on the estimation, some of the researchers found new methods to address these two problems together at the same time. In this research a comparison for the performance of the Principal Components Two Parameter estimator (PCTP) and The (r-k) class estimator and the r-(k,d) class estimator by conducting a simulation study and through the results and under the mean square error (MSE) criterion to find the best way to address the two problems together. The results showed that the r-(k,d) class estimator is the best esti

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of BASE methods with other methods for estimating the measurement parameter for WEBB distribution using simulations
...Show More Authors

  Weibull distribution is considered as one of the most widely  distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.

   In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model
...Show More Authors

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

View Publication Preview PDF
Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Baghdad Science Journal
Estimation of Apelin Levels in Iraqi Patients with Type II Diabetic Peripheral Neuropathy
...Show More Authors

Diabetes mellitus type 2 (T2DM) is a chronic and progressive condition, which affects people all around the world. The risk of complications increases with age if the disease is not managed properly. Diabetic neuropathy is caused by excessive blood glucose and lipid levels, resulting in nerve damage. Apelin is a peptide hormone that is found in different human organs, including the central nervous system and adipose tissue. The aim of this study is to estimate Apelin levels in diabetes type 2 and Diabetic peripheral Neuropathy (DPN) Iraqi patients and show the extent of peripheral nerve damage. The current study included 120 participants: 40 patients with Diabetes Mellitus, 40 patients with Diabetic peripheral Neuropathy, and 40 healthy

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Compared Some Estimators Ordinary Ridge Regression And Bayesian Ridge Regression With Practical Application
...Show More Authors

Maulticollinearity is a problem that always occurs when two or more predictor variables are correlated with each other. consist of the breach of one basic assumptions of the ordinary least squares method with biased estimates results, There are several methods which are proposed to handle this problem including the  method To address a problem  and  method To address a problem , In this research a comparisons are employed between the biased   method and unbiased   method with Bayesian   using Gamma distribution  method  addition to Ordinary Least Square metho

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Detecting Outliers In Multiple Linear Regression
...Show More Authors

It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases :  first, in real data; and secondly,  after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for  comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.

View Publication Preview PDF
Crossref