The goal (purpose) from using development technology that require mathematical procedure related with high Quality & sufficiency of solving complex problem called Dynamic Programming with in recursive method (forward & backward) through finding series of associated decisions for reliability function of Pareto distribution estimator by using two approach Maximum likelihood & moment .to conclude optimal policy
The operation of production planning is a difficult operation and it's required High effect and large time especially it is dynamic activity which it's basic variables change in continuous with the time, for this reason it needs using one of the operation research manner (Dynamic programming) which has a force in the decision making process in the planning and control on the production and its direct affect on the cost of production operation and control on the inventory.
In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.
In this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates sample size , and it replicates for the real value for parameters, for reliability times values we take .
Results were compared by using mean square error (MSE), the result appears as follows :
The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.
The Planning and Resource Development Department of the Iraqi Ministry of Health is very interested in improving medical care, health education, and village training programs. Accordingly, and through the available capabilities of the ministry, itdesires to allocate seven health centers to four villages in Baghdad, Iraq therefore the ministry needs to determine the number of health centers allocated to each of these villages which achieves the greatest degree of the overall effectiveness of the seven health centers in a fuzzy environment. The objective of this study is to use a fuzzy dynamic programming(DP) method to determine the optimal allocation of these centers, which allows the greatest overall effectiveness of these health centers
... Show MoreThe aim of this research is to compare traditional and modern methods to obtain the optimal solution using dynamic programming and intelligent algorithms to solve the problems of project management.
It shows the possible ways in which these problems can be addressed, drawing on a schedule of interrelated and sequential activities And clarifies the relationships between the activities to determine the beginning and end of each activity and determine the duration and cost of the total project and estimate the times used by each activity and determine the objectives sought by the project through planning, implementation and monitoring to maintain the budget assessed
... Show More
In 2020 one of the researchers in this paper, in his first research, tried to find out the Modified Weighted Pareto Distribution of Type I by using the Azzalini method for weighted distributions, which contain three parameters, two of them for scale while the third for shape.This research compared the distribution with two other distributions from the same family; the Standard Pareto Distribution of Type I and the Generalized Pareto Distribution by using the Maximum likelihood estimator which was derived by the researchers for Modified Weighted Pareto Distribution of Type I, then the Mont Carlo method was used–that is one of the simulation manners for generating random samples data in different sizes ( n= 10,30,50), and in di
... Show MoreIn this paper, game theory was used and applied to the transport sector in Iraq, as this sector includes two axes, the public transport axis and the second axis the private transport axis, as each of these axes includes several types of transport, namely (sea transport, air transport, land transport, transport by rail, port transport) and the travel and tourism sector, as public transport lacks this sector, as the competitive advantage matrix for the transport sector was formed and after applying the MinMax-MaxMin principle to the matrix in all its stages, it was found that there was an equilibrium point except for the last stage where the equilibrium point was not available Therefore, the use of the linear programming method was
... Show MoreThe research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
The survival analysis is one of the modern methods of analysis that is based on the fact that the dependent variable represents time until the event concerned in the study. There are many survival models that deal with the impact of explanatory factors on the likelihood of survival, including the models proposed by the world, David Cox, one of the most important and common models of survival, where it consists of two functions, one of which is a parametric function that does not depend on the survival time and the other a nonparametric function that depends on times of survival, which the Cox model is defined as a semi parametric model, The set of parametric models that depend on the time-to-event distribution parameters such as
... Show More