Preferred Language
Articles
/
jeasiq-900
Detecting Outliers In Multiple Linear Regression
...Show More Authors

It is well-known that the existence of outliers in the data will adversely affect the efficiency of estimation and results of the current study. In this paper four methods will be studied to detect outliers for the multiple linear regression model in two cases :  first, in real data; and secondly,  after adding the outliers to data and the attempt to detect it. The study is conducted for samples with different sizes, and uses three measures for  comparing between these methods . These three measures are : the mask, dumping and standard error of the estimate.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 01 2017
Journal Name
Energy Procedia
A Coupled Model of the Linear Joule Engine with Embedded Tubular Permanent Magnet Linear Alternator
...Show More Authors

Scopus (16)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
An Evolutionary Algorithm With Heuristic Operator for Detecting Protein Complexes in Protein Interaction Networks With Negative Controls
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Aug 28 2023
Journal Name
Journal Of Planner And Development
Estimation of urban land price within holly cities by using integrated GIS-regression models: case study Al-Kufa city- Iraq
...Show More Authors

        Urban land price is the primary indicator of land development in urban areas. Land prices in holly cities have rapidly increased due to tourism and religious activities. Public agencies are usually facing challenges in managing land prices in religious areas. Therefore, they require developed models or tools to understand land prices within religious cities. Predicting land prices can efficiently retain future management and develop urban lands within religious cities. This study proposed a new methodology to predict urban land prices within holy cities. The methodology is based on two models, Linear Regression (LR) and Support Vector Regression (SVR), and nine variables (land price, land area,

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 29 2015
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Study of Antioxidation Activity of Sulfated Polysaccharide Extracted From Green Algae Enteromorpha sp.: Study of Antioxidation Activity of Sulfated Polysaccharide Extracted From Green Algae Enteromorpha sp.
...Show More Authors

Samples of the green algae were collected from water of Shatt al-Arab in Garmat Ali in Basra. After purification, the green algae identified on Enteromorpha sp. The samples were dried and milled, then sulfated polysaccharides were extracted with hot water at 90°C precipitated with absolute ethanol, dialysed and lyophilized. The chemical composition was total sugars 56.4%, protein 1.3% and sulfur 19.7%. Antioxidation activity of sulfated polysaccharides was studied by four method and included estimation of ability of scavenging hydroxylated radicals, the results showed an increased in ability with increasing concentrations. Ability of scavenging and was 59.86% at the concentration of 2.5 mg/ ml, but BHT was 81.36%. Ability of scavenging

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
SUGGESTING MULTIPHASE REGRESSION MODEL ESTIMATION WITH SOME THRESHOLD POINT
...Show More Authors

The estimation of the regular regression model requires several assumptions to be satisfied such as "linearity". One problem occurs by partitioning the regression curve into two (or more) parts and then joining them by threshold point(s). This situation is regarded as a linearity violation of regression. Therefore, the multiphase regression model is received increasing attention as an alternative approach which describes the changing of the behavior of the phenomenon through threshold point estimation. Maximum likelihood estimator "MLE" has been used in both model and threshold point estimations. However, MLE is not resistant against violations such as outliers' existence or in case of the heavy-tailed error distribution. The main goal of t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Oct 27 2020
Journal Name
Journal Of Mechanics Of Continua And Mathematical Sciences
AUTOMATIC ARABIC KEYWORD EXTRACTION USING LOGISTIC REGRESSION
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 14 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The factors effecting the discovery of insurance fraud from the perspective of the National Insurance Company's employees
...Show More Authors

This research aims to identify the factors effecting the investigation of insurance fraud from the perspective of the National Insurance Company employees, by analyzing the study variables and make recommendations on how to enhance the company and employees performance, and to achieve the objectives of the study and test hypotheses a questionnaire was designed after referring to the international standards  and the 1969 Iraqi punishment law, and it was answered by 20 employees that were approved for the purposes of  this research and analysis.

      The study found that lack of employee training was a strong factor, while the supervisory staff and operational procedures was a weak one.

G

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Periodicals Of Engineering And Natural Sciences
Solving multicollinearity problem of gross domestic product using ridge regression method
...Show More Authors

This study is dedicated to solving multicollinearity problem for the general linear model by using Ridge regression method. The basic formulation of this method and suggested forms for Ridge parameter is applied to the Gross Domestic Product data in Iraq. This data has normal distribution. The best linear regression model is obtained after solving multicollinearity problem with the suggesting of 10 k value.

Scopus (4)
Scopus
Publication Date
Sun Jun 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
أستخدام أسلوب البرمجة الخطية على المحاصيل الزراعية باستخدام ستراتيجيات القرار المتعدد
...Show More Authors

The idea of this study depends on determining the demand of water to products of aslected project, and determining transformation wastes according to constant scientific formula and measuring value (the depended) to reach the water needed and give the amount of waste in water and additional areas that can be agricuitured if the right administration and possibilities of exploiting water well are available     

 

 

View Publication Preview PDF
Crossref