Preferred Language
Articles
/
jeasiq-89
Use projection pursuit regression and neural network to overcome curse of dimensionality
...Show More Authors

Abstract

This research aim to overcome the problem of dimensionality by using the methods of non-linear regression, which reduces the root of the average square error (RMSE), and is called the method of projection pursuit regression (PPR), which is one of the methods for reducing dimensions that work to overcome the problem of dimensionality (curse of dimensionality), The (PPR) method is a statistical technique that deals with finding the most important projections in multi-dimensional data , and With each finding projection , the data is reduced by linear compounds overall the projection. The process repeated to produce good projections until the best projections are obtained. The main idea of the PPR is to model the multiple regression as a sum of the nonlinear functions of the linear structures of the variables.

 Two approaches were used to solve the problem curse of dimensionality : the first approach is proposed projection pursuit regression method (PPR)  and The second approach is the method of neural networks (NN) representing by (Back Propagation of error)  which is one of the methods used in reducing dimensions . A simulated study was conducted to compare the methods used. The simulations were based on findings that showed that the method (NN) in this study gave better results than the (PPR) based on RMSE.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution
...Show More Authors

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

View Publication Preview PDF
Crossref (1)
Crossref